Qualitative measures for initial meshes

This paper reviews geometric measures used to assess the shape of finite elements in two- and three-dimensional meshes. Measures have been normalized and made scale invariant whenever possible. This paper also introduces a Universal Similarity Region that enhances comparisons of triangles and their measures. As a byproduct, the USR provides a dynamic way to compare improved triangular meshes. Copyright © 2000 John Wiley & Sons, Ltd.

[1]  George M. Phillips,et al.  Forbidden Shapes in the Finite Element Method , 1971 .

[2]  J. Cavendish Automatic triangulation of arbitrary planar domains for the finite element method , 1974 .

[3]  I. Babuska,et al.  ON THE ANGLE CONDITION IN THE FINITE ELEMENT METHOD , 1976 .

[4]  Marjorie Senechal,et al.  Which Tetrahedra Fill Space , 1981 .

[5]  D. Lindholm,et al.  Automatic triangular mesh generation on surfaces of polyhedra , 1983 .

[6]  D. A. Field,et al.  Implementing Watson's algorithm in three dimensions , 1986, SCG '86.

[7]  M. Baart,et al.  A note on invertible two-dimensional quadratic finite element transformations , 1987 .

[8]  J. Robinson Some new distortion measures for quadrilaterals , 1987 .

[9]  John Robinson,et al.  Distortion measures for quadrilaterals with curved boundaries , 1988 .

[10]  Gerald R. Karr,et al.  Finite element analysis in fluids; Proceedings of the Seventh International Conference on Finite Element Methods in Flow Problems, University of Alabama, Huntsville, Apr. 3-7, 1989 , 1989 .

[11]  Kent L. Lawrence,et al.  Two-dimensional finite element mesh generation based on stripwise automatic triangulation , 1990 .

[12]  R. Kent Goodrich,et al.  Lawson's triangulation is nearly optimal for controlling error bounds , 1990 .

[13]  Philippe A. Tanguy,et al.  Three‐dimensional adaptive finite element computations and applications to non‐Newtonian fluids , 1991 .

[14]  V. Parthasarathy,et al.  A constrained optimization approach to finite element mesh smoothing , 1991 .

[15]  D. A. Field A generic Delaunay triangulation algorithm for finite element meshes , 1991 .

[16]  Lori L. Scarlatos,et al.  Optimizing triangulations by curvature equalization , 1992, Proceedings Visualization '92.

[17]  Theodore H. H. Pian,et al.  Inverse mapping and distortion measures for quadrilaterals with curved boundaries , 1994 .

[18]  John Robinson,et al.  Quadrilateral and hexahedron shape parameters , 1994 .

[19]  A. Liu,et al.  On the shape of tetrahedra from bisection , 1994 .

[20]  R. Bank,et al.  An algorithm for coarsening unstructured meshes , 1996 .