Identification of hydrothermal alteration minerals associated with geothermal system using ASTER and Hyperion satellite data: a case study from Yankari Park, NE Nigeria

Abstract Concealed and fossilized geothermal systems are not characterized by obvious surface manifestations like hotsprings and fumaroles, therefore, could not be easily identifiable using conventional techniques. In this investigation, the applicability of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Hyperion data-sets were evaluated in discriminating hydrothermal alteration minerals associated with geothermal systems as a proxy in identifying subtle Geothermal systems at Yankari Park, Nigeria. Feature-oriented principal component selection, spectral angle mapper, linear spectral unmixing were applied to ASTER data based on spectral characteristics of hydrothermal alteration key minerals for a systematic selective extraction of the information of interest. Analytical imaging and geophysics-developed processing methods were applied to Hyperion data for mapping iron oxide/hydroxide minerals and clay mineral assemblages in hydrothermal alteration zones. The results indicate that ASTER and Hyperion could be complemented for reconnaissance stage of targeting subtle alteration mineral assemblages associated with geothermal systems.

[1]  Mapping of Alteration mineral zones by combining techniques of Remote Sensing and Spectroscopy in the parts of SE-Rajasthan , 2015 .

[2]  Vivek K. Sengar,et al.  MINERALOGICAL MAPPING IN THE PART OF A GOLD PROSPECT USING EO-1 HYPERION DATA , 2016 .

[3]  Mark Coolbaugh,et al.  Identification of a New Blind Geothermal System with Hyperspectral Remote Sensing and Shallow Temperature Measurements at Columbus Salt Marsh, Esmeralda County, Nevada , 2009 .

[4]  Mark Coolbaugh,et al.  Mineral mapping in the Pyramid Lake basin: hydrothermal alteration, chemical precipitates and geothermal energy potential. , 2010 .

[5]  E. Bedini Mineral mapping in the Kap Simpson complex, central East Greenland, using HyMap and ASTER remote sensing data , 2011 .

[6]  W. Calvin,et al.  Detection of geothermal anomalies using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) thermal infrared images at Bradys Hot Springs, Nevada, USA , 2007 .

[7]  Paul E. Lewis,et al.  MODTRAN4-based atmospheric correction algorithm: FLAASH (fast line-of-sight atmospheric analysis of spectral hypercubes) , 2002, SPIE Defense + Commercial Sensing.

[8]  Duncan Foley,et al.  Geothermal systems and monitoring hydrothermal features , 2009 .

[9]  Denis Norton,et al.  Theory of Hydrothermal Systems , 1984 .

[10]  F. Meer The effectiveness of spectral similarity measures for the analysis of hyperspectral imagery , 2006 .

[11]  Gail P. Anderson,et al.  Analysis of Hyperion data with the FLAASH atmospheric correction algorithm , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[12]  W. T. Parry,et al.  Clay Mineralogy of Phyllic and Intermediate Argillic Alteration at Bingham, Utah , 2002 .

[13]  Akira Iwasaki,et al.  Validation of a crosstalk correction algorithm for ASTER/SWIR , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[14]  Robert J. Stern,et al.  Mapping gossans in arid regions with Landsat TM and SIR-C images: the Beddaho Alteration Zone in northern Eritrea , 2000 .

[15]  Eli A. Silver,et al.  Hyperspectral Mineral Mapping in Support of Geothermal Exploration: Examples from Long Valley Caldera, CA and Dixie Valley, NV, USA , 2004 .

[16]  Adalene Moreira Silva,et al.  Mapeamento de óxidos de ferro usando imagens Landsat-8/OLI e EO-1/Hyperion nos depósitos ferríferos da Serra Norte, Província Mineral de Carajás, Brasil , 2016 .

[17]  Mazlan Hashim,et al.  Identification of hydrothermal alteration minerals for exploring of porphyry copper deposit using ASTER data, SE Iran , 2011 .

[18]  Varinder Saini,et al.  A Simplified Approach for Interpreting Principal Component Images , 2013 .

[19]  A. Crósta,et al.  Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis , 2003 .

[20]  W. Calvin,et al.  SEBASS hyperspectral thermal infrared data: surface emissivity measurement and mineral mapping , 2003 .

[21]  Fred A. Kruse,et al.  Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping , 2003, IEEE Trans. Geosci. Remote. Sens..

[22]  Jeffrey S. Kargel,et al.  The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) after fifteen years: Review of global products , 2015, Int. J. Appl. Earth Obs. Geoinformation.

[23]  G. Johnson,et al.  Hyperspectral detection of geothermal system-related soil mineralogy anomalies in Dixie Valley, Nevada: a tool for exploration , 2004 .

[24]  W. P. Loughlin,et al.  PRINCIPAL COMPONENT ANALYSIS FOR ALTERATION MAPPING , 1991 .

[25]  Mazlan Hashim,et al.  Evaluation of Earth Observing-1 (EO1) Data for Lithological and Hydrothermal Alteration Mapping: A Case Study from Urumieh-Dokhtar Volcanic Belt, SE Iran , 2015, Journal of the Indian Society of Remote Sensing.

[26]  P. Olasolo,et al.  Enhanced geothermal systems (EGS): A review , 2016 .

[27]  Alvaro Penteado Crósta,et al.  Geological mapping using Landsat Thematic Mapper imagery in Almeria Province, south-east Spain , 1989 .

[28]  Dr Robert Bryant,et al.  The mapping of hydrothermal alteration zones on the island of Lesvos, Greece using an integrated remote sensing dataset , 2002 .

[29]  W. L. Pickles,et al.  Geothermal Prospecting using Hyperspectral Imaging and Field Observations, Dixie Meadows, NV , 2004 .

[30]  T. Horton,et al.  Identifying blind geothermal systems with soil CO2 surveys , 2014 .

[31]  H. Azizi,et al.  Extraction of hydrothermal alterations from ASTER SWIR data from east Zanjan, northern Iran , 2010 .

[32]  Anupma Prakash,et al.  Quantifying the heat flux and outflow rate of hot springs using airborne thermal imagery: Case study from Pilgrim Hot Springs, Alaska , 2013 .

[33]  Mazlan Hashim,et al.  Hydrothermal alteration mapping from Landsat-8 data, Sar Cheshmeh copper mining district, south-eastern Islamic Republic of Iran , 2015 .

[34]  Bo-Cai Gao,et al.  A Review of Atmospheric Correction Techniques for Hyperspectral Remote Sensing of Land Surfaces and Ocean Color , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[35]  S. Arnórsson The use of mixing models and chemical geothermometers for estimating underground temperatures in geothermal systems , 1985 .

[36]  K. Mosto Onuoha,et al.  Subsurface temperature variations and heat flow in the Anambra Basin, Nigeria , 1999 .

[37]  Shaun L.L. Barker,et al.  Mapping lithology and hydrothermal alteration in geothermal systems using portable X-ray fluorescence (pXRF): A case study from the Tauhara geothermal system, Taupo Volcanic Zone , 2016 .

[38]  M. Ramsey,et al.  Exploration of geothermal systems using hyperspectral thermal infrared remote sensing , 2013 .

[39]  Femi Olokesusi,et al.  Assessment of the Yankari game reserve, Nigeria: Problems and prospects , 1990 .

[40]  Hao Chen,et al.  Processing Hyperion and ALI for forest classification , 2003, IEEE Trans. Geosci. Remote. Sens..

[41]  W. Calvin,et al.  Surface mineral mapping at Steamboat Springs, Nevada, USA, with multi-wavelength thermal infrared images , 2005 .

[42]  F. Kruse Use of airborne imaging spectrometer data to map minerals associated with hydrothermally altered rocks in the northern grapevine mountains, Nevada, and California , 1988 .

[43]  Mazlan Hashim,et al.  The earth observing-1 (eo-1) satellite data for geological mapping, southeastern segment of the central Iranian volcanic belt, Iran , 2011 .

[44]  Mazlan Hashim,et al.  Application of advanced spaceborne thermal emission and reflection radiometer (ASTER) data in geological mapping , 2011 .

[45]  H. Ranjbar,et al.  Application of Principal Component Analysis and Spectral Angle Mapper in the Mapping of Hydrothermal Alteration in the Jebal–Barez Area, Southeastern Iran , 2012 .

[46]  D. Morata,et al.  Physical, chemical and mineralogical evolution of the Tolhuaca geothermal system, southern Andes, Chile: Insights into the interplay between hydrothermal alteration and brittle deformation , 2016 .

[47]  W. Manspeizer Triassic-Jurassic rifting : continental breakup and the origin of the Atlantic Ocean and passive margins , 1988 .

[48]  B. Shanks Hydrothermal Alteration , 2012 .

[49]  A. E. Scheidegger,et al.  Another possible earthquake near Gombe in Nigeria on the 18-19 June 1985 , 1988 .

[50]  M. Hashim,et al.  Using spectral mapping techniques on short wave infrared bands of ASTER remote sensing data for alteration mineral mapping in SE Iran , 2011 .

[51]  Tan Bing-xiang,et al.  Preprocessing of EO-1 Hyperion Hyperspectral Data , 2005 .

[52]  Tim R. McVicar,et al.  Preprocessing EO-1 Hyperion hyperspectral data to support the application of agricultural indexes , 2003, IEEE Trans. Geosci. Remote. Sens..

[53]  Simon J. Hook,et al.  Mapping Hydrothermally Altered Rocks at Cuprite, Nevada, Using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), a New Satellite-Imaging System , 2003 .

[54]  Cheryl Jaworowski,et al.  Use of ASTER and MODIS thermal infrared data to quantify heat flow and hydrothermal change at Yellowstone National Park , 2012 .

[55]  Roger,et al.  Spectroscopy of Rocks and Minerals , and Principles of Spectroscopy , 2002 .

[56]  E. Carranza,et al.  Mineral imaging with Landsat Thematic Mapper data for hydrothermal alteration mapping in heavily vegetated terrane , 2002 .

[57]  J. Lund,et al.  Direct utilization of geothermal energy 2015 worldwide review , 2011 .

[58]  F. Kruse Mapping surface mineralogy using imaging spectrometry , 2012 .

[59]  N. Rubinstein,et al.  Hydrothermal alteration mapping using ASTER data in the Infiernillo porphyry deposit, Argentina , 2007 .

[60]  Q. Li,et al.  Hydrothermal alteration mapping using ASTER data in Baogutu porphyry deposit, China , 2014 .

[61]  C. K. Singh,et al.  Modeling urban heat islands in heterogeneous land surface and its correlation with impervious surface area by using night-time ASTER satellite data in highly urbanizing city, Delhi-India , 2013 .

[62]  T. Kusky,et al.  Remote sensing detection of gold related alteration zones in Um Rus area, Central Eastern Desert of Egypt , 2012 .

[63]  M. Hashim,et al.  The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits , 2012 .

[64]  Pol Coppin,et al.  Endmember variability in Spectral Mixture Analysis: A review , 2011 .

[65]  Eyal Ben-Dor,et al.  Mapping of hydrothermally altered rocks by the EO‐1 Hyperion sensor, Northern Danakil Depression, Eritrea , 2008 .

[66]  D. Roberts,et al.  A comparison of error metrics and constraints for multiple endmember spectral mixture analysis and spectral angle mapper , 2004 .

[67]  Z. Li,et al.  Transformation of halloysite and kaolinite into beidellite under hydrothermal condition , 2017 .

[68]  John R. Jensen,et al.  Introductory Digital Image Processing: A Remote Sensing Perspective , 1986 .

[69]  Maged Marghany,et al.  Exploration of gold mineralization in a tropical region using Earth Observing-1 (EO1) and JERS-1 SAR data: a case study from Bau gold field, Sarawak, Malaysia , 2013, Arabian Journal of Geosciences.

[70]  J. Huntington,et al.  The role of remote sensing in finding hydrothermal mineral deposits on earth. , 2007, Ciba Foundation symposium.

[71]  W. Calvin,et al.  Geothermal exploration with Hymap hyperspectral data at Brady¿Desert Peak, Nevada , 2006 .

[72]  Mazlan Hashim,et al.  ASTER, ALI and Hyperion sensors data for lithological mapping and ore minerals exploration , 2014, SpringerPlus.

[73]  G. Hunt SPECTRAL SIGNATURES OF PARTICULATE MINERALS IN THE VISIBLE AND NEAR INFRARED , 1977 .

[74]  Elizabeth F. Littlefield,et al.  Geothermal exploration using imaging spectrometer data over Fish Lake Valley, Nevada , 2014 .

[75]  F. D. van der Meer,et al.  Iterative spectral unmixing (ISU) , 1999 .

[76]  J. Dwyer Remotely Sensed Data Available from the US Geological Survey EROS Data Center , 2006 .

[77]  Mohammed Yerima Kwaya,et al.  Geothermal Exploration in Nigeria , 2019, Science Forum (Journal of Pure and Applied Sciences).

[78]  F. D. van der Meer,et al.  Spectral mixture modelling and spectral stratigraphy in carbonate lithofacies mapping , 1996 .

[79]  Carlos Roberto de Souza Filho,et al.  Identification of mineral components in tropical soils using reflectance spectroscopy and advanced spaceborne thermal emission and reflection radiometer (ASTER) data , 2011 .

[80]  R. W. Renaut,et al.  Geothermal activity and hydrothermal mineral deposits at southern Lake Bogoria, Kenya Rift Valley: Impact of lake level changes , 2017 .

[81]  P. Schroeder,et al.  Differentiating Styles of Alteration within Kaolin-Alunite Hydrothermal Deposits of Çanakkale, NW Turkey , 2016, Clays and Clay Minerals.

[82]  Mazlan Hashim,et al.  Detection of hydrothermal alteration zones in a tropical region using satellite remote sensing data: Bau Goldfield, Sarawak, Malaysia , 2013 .

[83]  R. Fournier Chemical geothermometers and mixing models for geothermal systems , 1977 .

[84]  Li Huang,et al.  Out-of-band correction technologies for the multispectral image of Mapping Satellite-1 by using EO-1 Hyperion data , 2016 .

[85]  L. Rowan,et al.  Distribution of hydrothermally altered rocks in the Reko Diq, Pakistan mineralized area based on spectral analysis of ASTER data , 2006 .

[86]  F. Kruse CHARACTERIZATION OF ACTIVE HOT-SPRINGS ENVIRONMENTS USING MULTISPECTRAL AND HYPERSPECTRAL REMOTE SENSING , 2003 .

[87]  Mehdi Honarmand,et al.  A Comparative Study of Landsat‐7 and Landsat‐8 Data Using Image Processing Methods for Hydrothermal Alteration Mapping , 2017 .

[88]  M. Abrams The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): Data products for the high spatial resolution imager on NASA's Terra platform , 2000 .

[89]  M. Popoff,et al.  The Benue trough: Wrench-fault related basin on the border of the equatorial Atlantic , 1988 .

[90]  R. Ashley,et al.  Spectra of altered rocks in the visible and near infrared , 1979 .

[91]  M. Ramsey,et al.  Analysis of hot springs and associated deposits in Yellowstone National Park using ASTER and AVIRIS remote sensing , 2004 .

[92]  Diego Fernando Ducart,et al.  Mapeamento de óxidos de ferro usando imagens Landsat-8/OLI e EO-1/Hyperion nos depósitos ferríferos da Serra Norte, Província Mineral de Carajás, Brasil , 2016 .

[93]  Mercy W. Mwaniki,et al.  A comparison of Landsat 8 (OLI) and Landsat 7 (ETM+) in mapping geology and visualising lineaments: A case study of central region Kenya , 2015 .

[94]  A. S. Ekine,et al.  Geothermal Gradients in the Chad Basin, Nigeria, from Bottom Hole Temperature Logs , 2009 .

[95]  Elizabeth F. Littlefield,et al.  Remote sensing of geothermal-related minerals for resource exploration in Nevada , 2015 .

[96]  Levi I. Nwankwo,et al.  Evaluation of Curie-point depths, geothermal gradients and near-surface heat flow from high-resolution aeromagnetic (HRAM) data of the entire Sokoto Basin, Nigeria , 2015 .

[97]  Fred A. Kruse,et al.  Comparison of three calibration techniques for utilization of GER 63-channel aircraft scanner data of Makhtesh Ramon, Negev, Israel , 1994 .

[98]  Yasushi Yamaguchi,et al.  Spectral indices for lithologic discrimination and mapping by using the ASTER SWIR bands , 2003 .

[99]  Yasuhiro Fujimitsu,et al.  Mapping hydrothermal altered mineral deposits using Landsat 7 ETM+ image in and around Kuju volcano, Kyushu, Japan , 2012, Journal of Earth System Science.

[100]  Marsha Fox,et al.  Speed and accuracy improvements in FLAASH atmospheric correction of hyperspectral imagery , 2012 .

[101]  G. Corti,et al.  Geothermal potential and origin of natural thermal fluids in the northern Lake Abaya area, Main Ethiopian Rift, East Africa , 2017 .

[102]  John W. Lund,et al.  Direct utilization of geothermal energy 2010 worldwide review , 2011 .

[103]  H. Ranjbar,et al.  Image Segmentation for Hydrothermal Alteration Mapping Using PCA and Concentration–Area Fractal Model , 2013, Natural Resources Research.

[104]  I. Bogie,et al.  APPLICATION OF MINERAL DEPOSIT CONCEPTS TO GEOTHERMAL EXPLORATION , 2000 .