Wearable computers as packet transport mechanisms in highly-partitioned ad-hoc networks

The decreasing size and cost of wearable computers and mobile sensors is presenting new challenges and opportunities for deploying networks. Existing network routing protocols provide reliable communication between nodes and allow for mobility and even ad-hoc deployment. They rely, however on the assumption of a dense scattering of nodes and end-to-end connectivity in the network. In this paper we address routing support for ad-hoc, wireless networks under conditions of sporadic connectivity and ever-present network partitions. This work proposes a general framework of agent movement and communication in which mobile computers physically carry packets across network partitions. We then propose algorithms that exploit the relative position of stationary devices and non-randonmess in the movement of mobile agents in the network. The learned structure of the network is used to inform an adaptive routing strategy With a simulation, we evaluate these algorithms and their ability to route packets efficiently through a highly-partitioned network.

[1]  David Tse,et al.  Mobility increases the capacity of ad-hoc wireless networks , 2001, Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213).

[2]  David A. Maltz,et al.  Dynamic Source Routing in Ad Hoc Wireless Networks , 1994, Mobidata.

[3]  Wendi B. Heinzelman,et al.  Adaptive protocols for information dissemination in wireless sensor networks , 1999, MobiCom.

[4]  Thad Starner,et al.  The locust swarm: an environmentally-powered, networkless location and messaging system , 1997, Digest of Papers. First International Symposium on Wearable Computers.

[5]  Charles E. Perkins,et al.  Ad-hoc on-demand distance vector routing , 1999, Proceedings WMCSA'99. Second IEEE Workshop on Mobile Computing Systems and Applications.

[6]  Satish Kumar,et al.  Next century challenges: scalable coordination in sensor networks , 1999, MobiCom.