Claw-freeness, 3-homogeneous subsets of a graph and a reconstruction problem
暂无分享,去创建一个
Nicolas Trotignon | Maurice Pouzet | Hamza Si Kaddour | M. Pouzet | Nicolas Trotignon | H. S. Kaddour
[1] Xiaotie Deng,et al. Proof of Chvátal's conjecture on maximal stable sets and maximal cliques in graphs , 2004, J. Comb. Theory, Ser. B.
[2] Richard M. Wilson,et al. A Diagonal Form for the Incidence Matrices of t-Subsets vs.k-Subsets , 1990, Eur. J. Comb..
[3] Xiaotie Deng,et al. Corrigendum to Proof of Chvátal's conjecture on maximal stable sets and maximal cliques in graphs: [J. Combin. Theory Ser. B 91 (2004) 301-325] , 2005, J. Comb. Theory, Ser. B.
[4] Lowell W. Beineke,et al. Derived graphs with derived complements , 1971 .
[5] Maurice Pouzet,et al. Hypomorphy of graphs up to complementation , 2006, J. Comb. Theory, Ser. B.
[6] Andreas Brandstädt,et al. Maximum Weight Stable Set on graphs without claw and co-claw (and similar graph classes) can be solved in linear time , 2002, Inf. Process. Lett..
[7] Richard M. Wilson,et al. A course in combinatorics , 1992 .
[8] F. K. Bell. Line graphs of bipartite graphs with Hamiltonian paths , 2003 .
[9] William M. Kantor,et al. On incidence matrices of finite projective and affine spaces , 1972 .
[10] A. Goodman. On Sets of Acquaintances and Strangers at any Party , 1959 .
[11] L. Beineke. Characterizations of derived graphs , 1970 .
[12] J. A. Bondy,et al. Graph Theory , 2008, Graduate Texts in Mathematics.