Predicting global aerosol size distributions in general circulation models

[1] To better represent the indirect effect of aerosols on climate, a size-resolved simulation of aerosol microphysics, size distributions, number and mass concentrations has been incorporated into the GISS general circulation model (GCM). The TwO-Moment Aerosol Sectional (TOMAS) microphysics model used here conserves aerosol number as well as mass. It has high size resolution, 30 bins between 0.01 and 10 μm diameter. As a first application, a size-resolved simulation of sulfate has been performed. The model reproduces important features of the atmospheric aerosol such as number concentrations that increase with altitude and land-sea contrasts in aerosol number concentrations and size distributions. Comparisons with observations show that simulated size distributions are realistic and condensation nuclei (CN) concentrations agree with observations within about 25%. Predicted cloud condensation nuclei (CCN) concentrations are also in reasonable agreement with observations, although there are locations for which agreement would be improved by including other aerosol components such as sea salt and carbonaceous aerosols. Sensitivity scenarios show that uncertainties in nucleation and primary emissions from fossil fuels can have significant effects on predictions of CN and CCN concentrations.

[1]  Xiaohong Liu,et al.  Numerical simulation of new particle formation over the northwest Atlantic using the MM5 mesoscale model coupled with sulfur chemistry , 2001 .

[2]  R. Turco,et al.  A new source of tropospheric aerosols: Ion‐ion recombination , 1998 .

[3]  J. Penner,et al.  Global Emissions and Models of Photochemically Active Compounds , 1994 .

[4]  B. Albrecht Aerosols, Cloud Microphysics, and Fractional Cloudiness , 1989, Science.

[5]  A. Clarke,et al.  Nucleation in the equatorial free troposphere: Favorable environments during PEM‐Tropics , 1999 .

[6]  J. Penner,et al.  Effects of anthropogenic sulfate on cloud drop nucleation and optical properties , 1995 .

[7]  I. Tang,et al.  Water activities, densities, and refractive indices of aqueous sulfates and sodium nitrate droplets of atmospheric importance , 1994 .

[8]  MODELING SIZE-DISTRIBUTED SEA SALT AEROSOLS IN THE ATMOSPHERE: AN APPLICATION USING CANADIAN CLIMATE MODELS , 1998 .

[9]  T. Berntsen,et al.  Global distribution of sulphate in the troposphere: A three-dimensional model study , 1998 .

[10]  D. Hegg,et al.  A preliminary study of the effect of ammonia on particle nucleation in the marine boundary layer , 1995 .

[11]  F. Binkowski,et al.  The Regional Particulate Matter Model 1. Model description and preliminary results , 1995 .

[12]  R. Pincus,et al.  Effect of precipitation on the albedo susceptibility of clouds in the marine boundary layer , 1994, Nature.

[13]  J. Wilson,et al.  A global black carbon aerosol model , 1996 .

[14]  Joyce E. Penner,et al.  An assessment of the radiative effects of anthropogenic sulfate , 1997 .

[15]  U. Lohmann,et al.  Impact of sulfate aerosols on albedo and lifetime of clouds: A sensitivity study with the ECHAM4 GCM , 1997 .

[16]  G. Brasseur,et al.  A three-dimensional study of the tropospheric sulfur cycle , 1995 .

[17]  O. Boucher GCM Estimate of the Indirect Aerosol Forcing Using Satellite-Retrieved Cloud Droplet Effective Radii , 1995 .

[18]  Bandy,et al.  Particle nucleation in the tropical boundary layer and its coupling to marine sulfur sources , 1998, Science.

[19]  Leonard K. Peters,et al.  Binary Homogeneous Nucleation: Temperature and Relative Humidity Fluctuations, Nonlinearity, and Aspects of New Particle Production in the Atmosphere , 1994 .

[20]  Andrew A. Lacis,et al.  Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol , 1996 .

[21]  J. Seinfeld,et al.  General circulation model assessment of direct radiative forcing by the sulfate-nitrate-ammonium-water inorganic aerosol system , 2001 .

[22]  Vertical Profiles of CCN at Various Geographical Locations , 1973 .

[23]  Markku Kulmala,et al.  The potential for atmospheric mixing processes to enhance the binary nucleation rate , 1998 .

[24]  J. Seinfeld,et al.  Size- and Composition-Resolved Externally Mixed Aerosol Model , 1998 .

[25]  U. Lohmann,et al.  Sensitivity of sulphate aerosol size distributions and CCN concentrations over North America to SO x emissions and H2O2 concentrations , 2000 .

[26]  Mian Chin,et al.  A global three‐dimensional model of tropospheric sulfate , 1996 .

[27]  J. W. Fitzgerald,et al.  Marine aerosols: A review , 1991 .

[28]  D. Erickson,et al.  Climate response to indirect anthropogenic sulfate forcing , 1995 .

[29]  Peter H. Stone,et al.  Efficient Three-Dimensional Global Models for Climate Studies: Models I and II , 1983 .

[30]  P. Quinn,et al.  Processes controlling the distribution of aerosol particles in the lower marine boundary layer during the First Aerosol Characterization Experiment (ACE 1) , 1998 .

[31]  Robert C. Brown,et al.  Aerosol dynamics in near‐field aircraft plumes , 1996 .

[32]  Johann Feichter,et al.  Simulation of the tropospheric sulfur cycle in a global climate model , 1996 .

[33]  H. B. Howell,et al.  On the Source and Composition of Cloud Nuclei in a Subsident Air Mass over the North Atlantic , 1970 .

[34]  Robert Sausen,et al.  European scientific assessment of the atmospheric effects of aircraft emissions , 1998 .

[35]  S. F. Marshall,et al.  Comparison of measured and calculated aerosol properties relevant to the direct radiative forcing of tropospheric sulfate aerosol on climate , 1995 .

[36]  A. Jaecker-Voirol,et al.  Heteromolecular nucleation in the sulfuric acid-water system , 1989 .

[37]  G. M. Frick,et al.  Effect of nonprecipitating clouds on the aerosol size distribution in the marine boundary layer , 1986 .

[38]  Antony D. Clarke,et al.  Particle production in the remote marine atmosphere: Cloud outflow and subsidence during ACE 1 , 1998 .

[39]  J. Seinfeld,et al.  Ternary nucleation of H2SO4, NH3, and H2O in the atmosphere , 1999 .

[40]  J. Katz,et al.  Binary homogeneous nucleation as a mechanism for the formation of aerosols , 1974 .

[41]  J. Lelieveld,et al.  Terrestrial sources and distribution of atmospheric sulphur , 1997 .

[42]  A. Jaecker-Voirol,et al.  Nucleation rate in a binary mixture of sulfuric acid and water vapor , 1988 .

[43]  J. W. Fitzgerald,et al.  Aerosol size distributions in air masses advecting off the east coast of the United States , 1985 .

[44]  M. Molina,et al.  Mass Accommodation Coefficient of H2SO4 Vapor on Aqueous Sulfuric Acid Surfaces and Gaseous Diffusion Coefficient of H2SO4 in N2/H2O , 1998 .

[45]  S. Twomey Pollution and the Planetary Albedo , 1974 .

[46]  Charles A. Brock,et al.  In situ observations and model calculations of black carbon emission by aircraft at cruise altitude , 1999 .

[47]  S. Kreidenweis,et al.  Influence of sea-salt on aerosol radiative properties in the Southern Ocean marine boundary layer , 1998, Nature.

[48]  P. Quinn,et al.  Physical properties of marine boundary layer aerosol particles of the mid-Pacific in relation to sources and meteorological transport , 1996 .

[49]  Anthony S. Wexler,et al.  Modelling urban and regional aerosols—I. model development , 1994 .

[50]  Henning Rodhe,et al.  A global three-dimensional model of the tropospheric sulfur cycle , 1991 .

[51]  G. Sehmel Particle and gas dry deposition: A review , 1980 .

[52]  S. Kreidenweis,et al.  The Effects of Clouds on Aerosol and Chemical Species Production and Distribution. Part III: Aerosol Model Description and Sensitivity Analysis. , 1998 .

[53]  J. Lerner,et al.  Use of on-line tracers as a diagnostic tool in general circulation model development 1. Horizontal and vertical transport in the troposphere , 1996 .

[54]  B. Hicks,et al.  Some factors that affect the deposition rates of sulfur dioxide and similar gases on vegetation , 1977 .

[55]  A. Clarke Atmospheric nuclei in the remote free-troposphere , 1992 .

[56]  P. J. Rasch,et al.  Sulfur chemistry in the National Center for Atmospheric Research Community Climate Model: Description, evaluation, features, and sensitivity to aqueous chemistry , 2000 .

[57]  L. Pirjola,et al.  Stable sulphate clusters as a source of new atmospheric particles , 2000, Nature.

[58]  M. Gallagher,et al.  Measurements of aerosol fluxes to Speulder forest using a micrometeorological technique , 1997 .

[59]  James G. Hudson,et al.  Evaluation of aerosol direct radiative forcing in MIRAGE , 2001 .

[60]  P. J. Rasch,et al.  Radiative forcing due to sulfate aerosols from simulations with the National Center for Atmospheric Research Community Climate Model, Version 3 , 2000 .

[61]  Richard S. Stolarski,et al.  The Atmospheric Effects of Stratospheric Aircraft: a First Program Report , 1992 .

[62]  A. Clarke Atmospheric nuclei in the Pacific midtroposphere: Their nature, concentration, and evolution , 1993 .

[63]  S. Wofsy,et al.  Emission Measurements of the Concorde Supersonic Aircraft in the Lower Stratosphere , 1995, Science.

[64]  Zev Levin,et al.  The Evolution of Raindrop Spectra. Part II: Collisional Collection/Breakup and Evaporation in a Rainshaft , 1989 .

[65]  G. J. Doyle Self‐Nucleation in the Sulfuric Acid‐Water System , 1961 .

[66]  A. Nenes,et al.  ISORROPIA: A New Thermodynamic Equilibrium Model for Multiphase Multicomponent Inorganic Aerosols , 1998 .

[67]  Hajime Okamoto,et al.  Global three‐dimensional simulation of aerosol optical thickness distribution of various origins , 2000 .

[68]  K. T. Whitby THE PHYSICAL CHARACTERISTICS OF SULFUR AEROSOLS , 1978 .

[69]  B. Dahneke Simple Kinetic Theory of Brownian Diffusion in Vapors and Aerosols , 1983 .

[70]  L. Ruby Leung,et al.  A physically based estimate of radiative forcing by anthropogenic sulfate aerosol , 2001 .

[71]  M. Kulmala,et al.  Binary nucleation of water–sulfuric acid system: Comparison of classical theories with different H2SO4 saturation vapor pressures , 1990 .

[72]  F. Schröder,et al.  Jet Engine Exhaust Aerosol Characterization , 1998 .

[73]  M. Chin,et al.  Tropospheric sulfur simulation and sulfate direct radiative forcing in the Goddard Institute for Space Studies general circulation model , 1999 .

[74]  P. Crutzen,et al.  Human‐activity‐enhanced formation of organic aerosols by biogenic hydrocarbon oxidation , 2000 .

[75]  P. Mcmurry,et al.  Particle production near marine clouds: Sulfuric acid and predictions from classical binary nucleation , 1999 .

[76]  Rodney J. Weber,et al.  New particle formation at a remote continental site: Assessing the contributions of SO2 and organic precursors , 1997 .

[77]  J. Hales,et al.  Statistical aspects of the washout of polydisperse aerosols , 1976 .

[78]  A. Laaksonen,et al.  Nucleation: measurements, theory, and atmospheric applications. , 1995, Annual review of physical chemistry.

[79]  Anthony D. Del Genio,et al.  A Prognostic Cloud Water Parameterization for Global Climate Models , 1996 .

[80]  A. Petzold,et al.  Aerosol states in the free troposphere at northern midlatitudes , 2002 .

[81]  P. Kasibhatla,et al.  A three-dimensional global model investigation of seasonal variations in the atmospheric burden of anthropogenic , 1997 .

[82]  M. Yao,et al.  Efficient Cumulus Parameterization for Long-Term Climate Studies: The GISS Scheme , 1993 .

[83]  John H. Seinfeld,et al.  Global concentrations of tropospheric sulfate, nitrate, and ammonium aerosol simulated in a general circulation model , 1999 .

[84]  E. Bigg,et al.  Origin of Aitken particles in remote regions of the Southern Hemisphere , 1984 .

[85]  Howard Reiss,et al.  Hydrates in supersaturated binary sulfuric acid‐water vapor , 1974 .

[86]  E. Kjellström A Three-Dimensional Global Model Study of Carbonyl Sulfide in the Troposphere and the Lower Stratosphere , 1997 .

[87]  U. Schumann,et al.  In situ observations of particles in jet aircraft exhausts and contrails for different sulfur-containing fuels , 1996 .

[88]  Thomas E. Graedel,et al.  Global gridded inventories of anthropogenic emissions of sulfur and nitrogen , 1996 .

[89]  W. R. Cofer,et al.  An assessment of aircraft as a source of particles to the upper troposphere , 1999 .

[90]  Robert Sausen,et al.  The contribution of aircraft emissions to the atmospheric sulfur budget , 1999 .

[91]  L. Pirjola,et al.  The effect of atmospheric waves on aerosol nucleation and size distribution , 2000 .

[92]  U. Lohmann,et al.  The atmospheric sulfur cycle in ECHAM-4 and its impact on the shortwave radiation , 1997 .

[93]  Zong-ci Zhao,et al.  Climate change 2001, the scientific basis, chap. 8: model evaluation. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change IPCC , 2001 .

[94]  J. Lelieveld,et al.  Simulation of global sulfate distribution and the influence on effective cloud drop radii with a coupled photochemistry sulfur cycle model , 1998 .

[95]  G. Feingold,et al.  An Efficient Numerical Solution to the Stochastic Collection Equation , 1987 .

[96]  I. Fung,et al.  Modeling of mineral dust in the atmosphere: Sources, transport, and optical thickness , 1994 .

[97]  P. V. Velthoven,et al.  Observations of aerosols in the free troposphere and marine boundary layer of the subtropical Northeast Atlantic: Discussion of processes determining their size distribution , 1997 .

[98]  R. Van Dingenen,et al.  Evidence for anthropogenic impact on number concentration and sulfate content of cloud‐processed aerosol particles over the North Atlantic , 1995 .

[99]  Olivier Boucher,et al.  The sulfate‐CCN‐cloud albedo effect , 1995 .

[100]  A. Kettle,et al.  Flux of dimethylsulfide from the oceans: A comparison of updated data sets and flux models , 2000 .

[101]  J. Lelieveld,et al.  Role of mineral aerosol as a reactive surface in the global troposphere , 1996 .

[102]  J. Penner,et al.  A global three‐dimensional model study of carbonaceous aerosols , 1996 .

[103]  D. Koch,et al.  Trends in tropospheric aerosol loads and corresponding impact on direct radiative forcing between 1950 and 1990: A model study , 2000 .

[104]  M. H. Smith,et al.  Marine aerosol, sea-salt, and the marine sulphur cycle: a short review , 1997 .

[105]  Mian Chin,et al.  Contribution of different aerosol species to the global aerosol extinction optical thickness: Estimates from model results , 1997 .