Intersection Dimension of Bipartite Graphs

We introduce a concept of intersection dimension of a graph with respect to a graph class. This generalizes Ferrers dimension, boxicity, and poset dimension, and leads to interesting new problems. We focus in particular on bipartite graph classes defined as intersection graphs of two kinds of geometric objects. We relate well-known graph classes such as interval bigraphs, two-directional orthogonal ray graphs, chain graphs, and (unit) grid intersection graphs with respect to these dimensions. As an application of these graph-theoretic results, we show that the recognition problems for certain graph classes are NP-complete.

[1]  Stefan Felsner,et al.  On the Recognition of Four-Directional Orthogonal Ray Graphs , 2013, MFCS.

[2]  Douglas B. Westy Rectangle Number for Hypercubes and Complete Multipartite Graphs , 2007 .

[3]  Pavol Hell,et al.  Approximation of Minimum Cost Homomorphisms , 2012, ESA.

[4]  Kellogg S. Booth,et al.  Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..

[5]  Jeremy P. Spinrad,et al.  Doubly Lexical Ordering of Dense 0 - 1 Matrices , 1993, Inf. Process. Lett..

[6]  M. Golumbic Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol 57) , 2004 .

[7]  Yota Otachi,et al.  Relationships between the class of unit grid intersection graphs and other classes of bipartite graphs , 2007, Discret. Appl. Math..

[8]  C. Lekkeikerker,et al.  Representation of a finite graph by a set of intervals on the real line , 1962 .

[9]  Mehdi Baradaran Tahoori,et al.  A mapping algorithm for defect-tolerance of reconfigurable nano-architectures , 2005, ICCAD-2005. IEEE/ACM International Conference on Computer-Aided Design, 2005..

[10]  Ramesh Karri,et al.  Logic Mapping in Crossbar-Based Nanoarchitectures , 2009, IEEE Design & Test of Computers.

[11]  Haiko Müller,et al.  Recognizing Interval Digraphs and Interval Bigraphs in Polynomial Time , 1997, Discret. Appl. Math..

[12]  Satoshi Tayu,et al.  On orthogonal ray graphs , 2010, Discret. Appl. Math..

[13]  Dieter Kratsch,et al.  Linear-time certifying recognition algorithms and forbidden induced subgraphs , 2007, Nord. J. Comput..

[14]  Jeremy P. Spinrad,et al.  Bipartite permutation graphs , 1987, Discret. Appl. Math..

[15]  Jeremy P. Spinrad,et al.  Efficient graph representations , 2003, Fields Institute monographs.

[16]  Martin Charles Golumbic Not So Perfect Graphs , 2004 .

[17]  Abhijin Adiga,et al.  Boxicity and Poset Dimension , 2010, SIAM J. Discret. Math..

[18]  Gerhard J. Woeginger,et al.  Permuting Matrices to Avoid Forbidden Submatrices , 1995, Discret. Appl. Math..

[19]  Stephan Olariu,et al.  The LBFS Structure and Recognition of Interval Graphs , 2009, SIAM J. Discret. Math..

[20]  Yi-Wu Chang,et al.  Rectangle number for hypercubes and complete multipartite graphs , 1998 .

[21]  Douglas B. West,et al.  Interval digraphs: An analogue of interval graphs , 1989, J. Graph Theory.

[22]  Jan Kratochvíl A Special Planar Satisfiability Problem and a Consequence of Its NP-completeness , 1994, Discret. Appl. Math..

[23]  William T. Trotter,et al.  Dimension of the crown Skn , 1974, Discret. Math..

[24]  Douglas B. West,et al.  Circular-arc digraphs: A characterization , 1989, J. Graph Theory.

[25]  Martin Pergel,et al.  Unit Grid Intersection Graphs: Recognition and Properties , 2013, ArXiv.

[26]  Pavol Hell,et al.  Interval bigraphs and circular arc graphs , 2004, J. Graph Theory.

[27]  Pavol Hell,et al.  List Homomorphisms and Circular Arc Graphs , 1999, Comb..

[28]  Vladimir Gurvich,et al.  Difference graphs , 2004, Discret. Math..

[29]  Sue Whitesides,et al.  Grid intersection graphs and boxicity , 1993, Discret. Math..

[30]  Tayu Satoshi,et al.  On Unit Grid Intersection Graphs , 2013 .

[31]  L. Sunil Chandran,et al.  Cubicity, boxicity, and vertex cover , 2007, Discret. Math..

[32]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[33]  Asahi Takaoka,et al.  On Unit Grid Intersection Graphs (信号処理) , 2013 .

[34]  Stefan Felsner,et al.  The Order Dimension of Planar Maps Revisited , 2014, SIAM J. Discret. Math..

[35]  David G. Kirkpatrick,et al.  Algorithmic aspects of constrained unit disk graphs , 1996 .

[36]  Arash Rafiey,et al.  Recognizing interval bigraphs by forbidden patterns , 2012, J. Graph Theory.

[37]  Ilan Newman,et al.  On grid intersection graphs , 1991, Discret. Math..

[38]  Olivier Cogis,et al.  On the Ferrers dimension of a digraph , 1982, Discret. Math..

[39]  L. Sunil Chandran,et al.  Chordal Bipartite Graphs with High Boxicity , 2011, Graphs Comb..

[40]  Soumyottam Chatterjee,et al.  Ferrers dimension and boxicity , 2010, Discret. Math..

[41]  M. Golummc Algorithmic graph theory and perfect graphs , 1980 .

[42]  Wojciech A. Trybulec Partially Ordered Sets , 1990 .

[43]  Pavol Hell,et al.  Two remarks on circular arc graphs , 1997, Graphs Comb..

[44]  Douglas B. West,et al.  Representing digraphs using intervals or circular arcs , 1995, Discret. Math..

[45]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .