PEG-based micelles as carriers of contrast agents for different imaging modalities.

[1]  Teruo Okano,et al.  Soluble Self-Assembled Block Copolymers for Drug Delivery , 1999, Pharmaceutical Research.

[2]  Vladimir P. Torchilin,et al.  Accumulation of Protein-Loaded Long-Circulating Micelles and Liposomes in Subcutaneous Lewis Lung Carcinoma in Mice , 1998, Pharmaceutical Research.

[3]  T. Okano,et al.  Biodistribution of Micelle-Forming Polymer–Drug Conjugates , 1993, Pharmaceutical Research.

[4]  A M Tsatsakis,et al.  Amphiphilic poly-N-vinylpyrrolidones: synthesis, properties and liposome surface modification. , 2001, Biomaterials.

[5]  V. Torchilin,et al.  TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[6]  V. Torchilin,et al.  Structure and design of polymeric surfactant-based drug delivery systems. , 2001, Journal of controlled release : official journal of the Controlled Release Society.

[7]  V. Torchilin,et al.  p-Nitrophenylcarbonyl-PEG-PE-liposomes: fast and simple attachment of specific ligands, including monoclonal antibodies, to distal ends of PEG chains via p-nitrophenylcarbonyl groups. , 2001, Biochimica et biophysica acta.

[8]  H. Maeda,et al.  Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. , 2000, Journal of controlled release : official journal of the Controlled Release Society.

[9]  V. Torchilin Polymeric micelles in diagnostic imaging , 1999 .

[10]  M. Jones,et al.  Polymeric micelles - a new generation of colloidal drug carriers. , 1999, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[11]  U. Bakowsky,et al.  Targetability of novel immunoliposomes prepared by a new antibody conjugation technique. , 1999, International journal of pharmaceutics.

[12]  Wolf Delivery of diagnostic agents: achievements and challenges. , 1999, Advanced drug delivery reviews.

[13]  V. Torchilin,et al.  CT visualization of blood pool in rats by using long-circulating, iodine-containing micelles. , 1999, Academic radiology.

[14]  T. Okano,et al.  Preparation and characterization of thermally responsive block copolymer micelles comprising poly(N-isopropylacrylamide-b-DL-lactide). , 1998, Journal of controlled release : official journal of the Controlled Release Society.

[15]  T. Okano,et al.  Effect of molecular architecture of hydrophobically modified poly(N-isopropylacrylamide) on the formation of thermoresponsive core-shell micellar drug carriers. , 1998, Journal of controlled release : official journal of the Controlled Release Society.

[16]  R. Jain,et al.  Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Y. M. Lee,et al.  Clonazepam release from core-shell type nanoparticles in vitro. , 1998, Journal of controlled release : official journal of the Controlled Release Society.

[18]  K. Kataoka,et al.  Remarkable increase in nuclease resistance of plasmid DNA through supramolecular assembly with poly(ethylene glycol)-poly(L-lysine) block copolymer. , 1998, Journal of pharmaceutical sciences.

[19]  K. Kataoka,et al.  Novel polyion complex micelles entrapping enzyme molecules in the core: Preparation of narrowly-distributed micelles from lysozyme and poly(ethylene glycol)-poly(aspartic acid) block copolymer in aqueous medium , 1998 .

[20]  Olivier Meyer,et al.  Copolymers of N‐isopropylacrylamide can trigger pH sensitivity to stable liposomes , 1998, FEBS letters.

[21]  V. Torchilin,et al.  Micellar Delivery System for Dequalinium—A Lipophilic Cationic Drug with Anticarcinoma Activity , 1998 .

[22]  V. Torchilin Polymer-coated long-circulating microparticulate pharmaceuticals. , 1998, Journal of microencapsulation.

[23]  G. Kwon,et al.  Diblock copolymer nanoparticles for drug delivery. , 1998, Critical reviews in therapeutic drug carrier systems.

[24]  Teruo Okano,et al.  Thermo-responsive polymer nanoparticles with a core-shell micelle structure as site-specific drug carriers , 1997 .

[25]  Teruo Okano,et al.  Block copolymer micelles for drug delivery: Loading and release of doxorubicin , 1997 .

[26]  A. Kabanov,et al.  Interactions of pluronic block copolymers with brain microvessel endothelial cells: evidence of two potential pathways for drug absorption. , 1997, Bioconjugate chemistry.

[27]  Torchilin Vp Pharmacokinetic considerations in the development of labeled liposomes and micelles for diagnostic imaging. , 1997 .

[28]  Rakesh K. Jain,et al.  Interstitial pH and pO2 gradients in solid tumors in vivo: High-resolution measurements reveal a lack of correlation , 1997, Nature Medicine.

[29]  G. Gazelle,et al.  Block-copolymer of polyethylene glycol and polylysine as a carrier of organic iodine: design of long-circulating particulate contrast medium for X-ray computed tomography. , 1997, Journal of drug targeting.

[30]  Teruo Okano,et al.  Polymeric micelles as new drug carriers , 1996 .

[31]  V. Torchilin,et al.  Stable polymeric micelles: lymphangiographic contrast media for gamma scintigraphy and magnetic resonance imaging. , 1996, Academic radiology.

[32]  P. Leander A New Liposomal Contrast Medium for CT of the Liver , 1996 .

[33]  Teruo Okano,et al.  Preparation and Characterization of the Micelle-Forming Polymeric Drug Indomethacin-lncorporated Polyfethylene oxide)-Poly(β-benzyl L-aspartate) Block Copolymer Micelles , 1996 .

[34]  V. Torchilin How do polymers prolong circulation time of liposomes , 1996 .

[35]  E. Moase,et al.  Attachment of antibodies to sterically stabilized liposomes: evaluation, comparison and optimization of coupling procedures. , 1995, Biochimica et biophysica acta.

[36]  F. Starr,et al.  Magnetic resonance imaging of the hepatobiliary system: intestinal absorption studies of manganese mesoporphyrin. , 1995, Academic radiology.

[37]  A. Gabizon,et al.  Liposome circulation time and tumor targeting: implications for cancer chemotherapy , 1995 .

[38]  Kazunori Kataoka,et al.  Block copolymer micelles as long-circulating drug vehicles , 1995 .

[39]  Vladimir P. Torchilin,et al.  Use of polyoxyethylene-lipid conjugates as long-circulating carriers for delivery of therapeutic and diagnostic agents , 1995 .

[40]  V. Torchilin,et al.  Which polymers can make nanoparticulate drug carriers long-circulating? , 1995 .

[41]  P. Caliceti,et al.  New synthetic amphiphilic polymers for steric protection of liposomes in vivo. , 1995, Journal of pharmaceutical sciences.

[42]  R K Jain,et al.  Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. , 1995, Cancer research.

[43]  L. Huang,et al.  Targetability of novel immunoliposomes modified with amphipathic poly(ethylene glycol)s conjugated at their distal terminals to monoclonal antibodies. , 1995, Biochimica et biophysica acta.

[44]  V. Torchilin Handbook of targeted delivery of imaging agents , 1995 .

[45]  T. Okano,et al.  Improved synthesis of adriamycin-conjugated poly (ethylene oxide)-poly (aspartic acid) block copolymer and formation of unimodal micellar structure with controlled amount of physically entrapped adriamycin , 1994 .

[46]  E F Halpern,et al.  Nanoparticulate computed tomography contrast agents for blood pool and liver-spleen imaging. , 1994, Academic radiology.

[47]  J. Philippot,et al.  Liposomes as Tools in Basic Research and Industry , 1994 .

[48]  M. Woodle,et al.  New amphipatic polymer-lipid conjugates forming long-circulating reticuloendothelial system-evading liposomes. , 1994, Bioconjugate chemistry.

[49]  V. Torchilin,et al.  Amphiphilic vinyl polymers effectively prolong liposome circulation time in vivo. , 1994, Biochimica et biophysica acta.

[50]  A A Bogdanov,et al.  Poly(ethylene glycol) on the liposome surface: on the mechanism of polymer-coated liposome longevity. , 1994, Biochimica et biophysica acta.

[51]  R. Jain,et al.  Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. , 1994, Cancer research.

[52]  G. Gazelle,et al.  Nanocrystalline computed tomography contrast agents for blood-pool and liver-spleen imaging. , 1994, Investigative radiology.

[53]  T. Gray,et al.  Surface engineered nanospheres with enhanced drainage into lymphatics and uptake by macrophages of the regional lymph nodes , 1994, FEBS letters.

[54]  Teruo Okano,et al.  Enhanced tumor accumulation and prolonged circulation times of micelle-forming poly(ethylene oxide-aspartate) block copolymer-Adriamycin conjugates , 1994 .

[55]  V. Torchilin,et al.  NEW APPROACHES IN THE CHEMICAL DESIGN OF Gd- CONTAINING LIPOSOMES FOR USE IN MAGNETIC RESONANCE IMAGING OF LYMPH NODES , 1994 .

[56]  R. Schwendener Liposomes as carriers for paramagnetic gadolinium chelates as organ specific contrast agents for magnetic resonance imaging (mri) , 1994 .

[57]  E. Unger,et al.  Manganese-Based Liposomes Comparative Approaches , 1993, Investigative radiology.

[58]  G. Storm,et al.  Specific targeting with poly(ethylene glycol)-modified liposomes: coupling of homing devices to the ends of the polymeric chains combines effective target binding with long circulation times. , 1993, Biochimica et biophysica acta.

[59]  T. Garrigues,et al.  Studies on the reliability of a novel absorption-lipophilicity approach to interpret the effects of the synthetic surfactants on drug and xenobiotic absorption. , 1993, Arzneimittel-Forschung.

[60]  Yokoyama Masayuki,et al.  Block copolymer micelles as vehicles for drug delivery , 1993 .

[61]  M. Woodle,et al.  67Gallium-labeled liposomes with prolonged circulation: preparation and potential as nuclear imaging agents. , 1993, Nuclear medicine and biology.

[62]  R. J. Hunter,et al.  Introduction To Modern Colloid Science , 1993 .

[63]  Alexander V. Kabanov,et al.  A new class of drug carriers: micelles of poly(oxyethylene)-poly(oxypropylene) block copolymers as microcontainers for drug targeting from blood in brain☆ , 1992 .

[64]  F. Nepveu,et al.  Synthesis of amphiphilic chelating agents : Bis(hexadecylamide) and bis(octadecylamide) of diethylenetriaminepentaacetic Acid. , 1992 .

[65]  V. Stella,et al.  Lymphatic Transport of Drugs , 1992 .

[66]  D. Lasič Mixed micelles in drug delivery , 1992, Nature.

[67]  M. Yokoyama Block copolymers as drug carriers. , 1992, Critical reviews in therapeutic drug carrier systems.

[68]  V. Torchilin,et al.  Terminal-modified polylysine-based chelating polymers: highly efficient coupling to antibody with minimal loss in immunoreactivity. , 1991, Bioconjugate chemistry.

[69]  Kazuo Maruyama,et al.  Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes , 1990, FEBS letters.

[70]  Magnetic resonance contrast media: principles and progress. , 1990 .

[71]  T. Okano,et al.  Characterization and anticancer activity of the micelle-forming polymeric anticancer drug adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer. , 1990, Cancer research.

[72]  N. Melik-Nubarov,et al.  The neuroleptic activity of haloperidol increases after its solubilization in surfactant micelles , 1989, FEBS letters.

[73]  I. Tannock,et al.  Acid pH in tumors and its potential for therapeutic exploitation. , 1989, Cancer research.

[74]  S. Karlik,et al.  A liposomal MRI contrast agent: Phosphatid ylethanolamine‐DTPA , 1989, Magnetic resonance in medicine.

[75]  P. Anderer,et al.  Comparative Bioavailability Studies with a New Mixed-micelles Solution of Diazepam Utilizing Radioreceptor Assay, Psychometry and EEG Brain Mapping , 1988, International clinical psychopharmacology.

[76]  K. Hubner,et al.  Gadolinium‐labeled liposomes containing paramagnetic amphipathic agents: Targeted MRI contrast agents for the liver , 1988, Magnetic resonance in medicine.

[77]  T. N. Palmer,et al.  The mechanism of liposome accumulation in infarction. , 1984, Biochimica et biophysica acta.