Temperature Versus Salinity Gradients Below the Ocean Mixed Layer

Abstract : We characterize the global ocean seasonal variability of the temperature versus salinity gradients in the transition layer just below the mixed layer using observations of conductivity temperature and depth and profiling float data from the National Ocean Data Center s World Ocean Data set. The balance of these gradients determines the temperature versus salinity control at the mixed layer depth (MLD). We define the MLD as the shallowest of the isothermal, isohaline, and isopycnal layer depths (ITLD, IHLD, and IPLD), each with a shared dependence on a 0.2 deg C temperature offset. Data are gridded monthly using a variational technique that minimizes the squared analysis slope and data misfit. Surface layers of vertically uniform temperature, salinity, and density have substantially different characteristics. By examining differences between IPLD, ITLD, and IHLD, we determine the annual evolution of temperature or salinity or both temperature and salinity vertical gradients responsible for the observed MLD. We find ITLD determines MLD for 63% and IHLD for 14% of the global ocean. The remaining 23% of the ocean has both ITLD and IHLD nearly identical. It is found that temperature tends to control MLD where surface heat fluxes are large and precipitation is small. Conversely, salinity controls MLD where precipitation is large and surface heat fluxes are small. In the tropical ocean, salinity controls MLD where surface heat fluxes can be moderate but precipitation is very large and dominant.

[1]  M. Mcphaden,et al.  Variability of surface layer hydrography in the tropical Pacific Ocean , 1997 .

[2]  Daniel L. Rudnick,et al.  Observations of the Transition Layer , 2007 .

[3]  R. Ferrari,et al.  Compensation and Alignment of Thermohaline Gradients in the Ocean Mixed Layer , 2003 .

[4]  Paul J. Martin,et al.  Formulation, implementation and examination of vertical coordinate choices in the Global Navy Coastal Ocean Model (NCOM) , 2006 .

[5]  Semyon A. Grodsky,et al.  Variability of the Oceanic Mixed Layer, 1960–2004 , 2008 .

[6]  Charlie N. Barron,et al.  Validation Test Report for GDEM4 , 2010 .

[7]  M. Mcphaden,et al.  Seasonal cycles of surface layer salinity in the Pacific Ocean , 2010 .

[8]  D. Rudnick,et al.  On the horizontal density ratio in the upper ocean , 2002 .

[9]  Juliette Mignot,et al.  Control of salinity on the mixed layer depth in the world ocean : 2. Tropical areas - art. no. C10010 , 2007 .

[10]  S. Riser,et al.  Seasonal salt budget in the northeast Pacific Ocean , 2008 .

[11]  A. Köhl,et al.  Ocean mixed layer depth: A subsurface proxy of ocean‐atmosphere variability , 2006 .

[12]  Robert A. Weller,et al.  Objectively Analyzed Air–Sea Heat Fluxes for the Global Ice-Free Oceans (1981–2005) , 2007 .

[13]  H. Wijesekera,et al.  Surface layer response to weak winds, westerly bursts, and rain squalls in the western Pacific Warm Pool , 1996 .

[14]  Peter A. Rochford,et al.  An optimal definition for ocean mixed layer depth , 2000 .

[15]  R. Helber,et al.  Evaluations of threshold and curvature mixed layer depths by various mixing schemes in the Mediterranean Sea , 2010 .

[16]  Janet Sprintall,et al.  Evidence of the barrier layer in the surface layer of the tropics , 1992 .

[17]  G. Kiladis,et al.  Upper-Ocean Processes under the Stratus Cloud Deck in the Southeast Pacific Ocean , 2010 .

[18]  R. Helber,et al.  Evaluating the sonic layer depth relative to the mixed layer depth , 2008 .

[19]  M. Gregg,et al.  Surface mixed and mixing layer depths , 1995 .

[20]  Dean Roemmich,et al.  The 2004-2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program , 2009 .

[21]  Roger Lukas,et al.  The mixed layer of the western equatorial Pacific Ocean , 1991 .

[22]  Daniele Iudicone,et al.  Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology , 2004 .

[23]  Juliette Mignot,et al.  Control of Salinity on the Mixed Layer Depth in the World Ocean , 2006 .

[24]  W. Large,et al.  Observational Evidence of Winter Spice Injection , 2007 .

[25]  Keir Colbo,et al.  The variability and heat budget of the upper ocean under the Chile-Peru stratus , 2007 .

[26]  P. Flament A state variable for characterizing water masses and their diffusive stability: spiciness , 2002 .

[27]  M. Mcphaden,et al.  Barrier layer formation during westerly wind bursts , 2002 .

[28]  J. Carton,et al.  Observed subseasonal variability of oceanic barrier and compensated layers. , 2009 .

[29]  R. Lukas,et al.  Upper-Ocean Heat and Salt Balances in the Western Equatorial Pacific in Response to the Intraseasonal Oscillation during TOGA COARE* , 2000 .

[30]  Lynne D. Talley,et al.  A New Algorithm for Finding Mixed Layer Depths with Applications to Argo Data and Subantarctic Mode Water Formation , 2009 .

[31]  Robert L. Smith,et al.  The Newport line off Oregon – Studies in the North East Pacific , 2007 .

[32]  S. Levitus,et al.  Linear trends of zonally averaged thermosteric, halosteric, and total steric sea level for individual ocean basins and the world ocean, (1955–1959)–(1994–1998) , 2005 .

[33]  Peter A. Rochford,et al.  Mixed layer depth variability and barrier layer formation over the North Pacific Ocean , 2000 .

[34]  J. Janowiak,et al.  The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present) , 2003 .

[35]  J. Slingo,et al.  Upper-ocean heat budget and ocean eddy transport in the south-east Pacific in a high-resolution coupled model , 2010 .

[36]  M. Mcphaden,et al.  Intraseasonal variability in barrier layer thickness in the south central Bay of Bengal , 2011 .

[37]  On the porosity of barrier layers , 2009 .