Optimal mobile robot pose estimation using geometrical maps

We propose a weighted least-squares (WLS) algorithm for optimal pose estimation of mobile robots using geometrical maps as environment models. Pose estimation is achieved from feature correspondences in a nonlinear framework without linearization. The proposed WLS approach yields optimal estimates in the least-squares sense, is applicable to heterogeneous geometrical features decomposed in points and lines, and has an O(N) computation time.

[1]  Avinash C. Kak,et al.  Vision-based navigation by a mobile robot with obstacle avoidance using single-camera vision and ultrasonic sensing , 1998, IEEE Trans. Robotics Autom..

[2]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[3]  Hugh F. Durrant-Whyte,et al.  Mobile robot localization by tracking geometric beacons , 1991, IEEE Trans. Robotics Autom..

[4]  Robert M. Haralick,et al.  Propagating covariance in computer vision , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[5]  Wolfram Burgard,et al.  Robust Monte Carlo localization for mobile robots , 2001, Artif. Intell..

[6]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[7]  James L. Crowley,et al.  World modeling and position estimation for a mobile robot using ultrasonic ranging , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[8]  Geovany de Araújo Borges,et al.  An optimal pose estimator for map-based mobile robot dynamic localization: experimental comparison with the EKF , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[9]  Roland Siegwart,et al.  Multisensor on-the-fly localization: : Precision and reliability for applications , 2001, Robotics Auton. Syst..

[10]  Sauro Longhi,et al.  Development and experimental validation of an adaptive extended Kalman filter for the localization of mobile robots , 1999, IEEE Trans. Robotics Autom..

[11]  Günther Schmidt,et al.  Fusing range and intensity images for mobile robot localization , 1999, IEEE Trans. Robotics Autom..

[12]  Yaakov Bar-Shalom,et al.  Estimation and Tracking: Principles, Techniques, and Software , 1993 .

[13]  Geovany de Araújo Borges,et al.  A split-and-merge segmentation algorithm for line extraction in 2D range images , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[14]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[15]  Mongi A. Abidi,et al.  Data fusion in robotics and machine intelligence , 1992 .

[16]  Vincenzo Caglioti,et al.  Minimum uncertainty explorations in the self-localization of mobile robots , 1998, IEEE Trans. Robotics Autom..

[17]  Hugh F. Durrant-Whyte,et al.  A new method for the nonlinear transformation of means and covariances in filters and estimators , 2000, IEEE Trans. Autom. Control..