Joint Graph Embedding and Alignment with Spectral Pivot

Graphs are powerful abstractions that naturally capture the wealth of relationships in our interconnected world. This paper proposes a new approach for graph alignment, a core problem in graph mining. Classical (e.g., spectral) methods use fixed embeddings for both graphs to perform the alignment. In contrast, the proposed approach fixes the embedding of the 'target' graph and jointly optimizes the embedding transformation and the alignment of the 'query' graph. An alternating optimization algorithm is proposed for computing high-quality approximate solutions and compared against the prevailing state-of-the-art graph aligning frameworks using benchmark real-world graphs. The results indicate that the proposed formulation can offer significant gains in terms of matching accuracy and robustness to noise relative to existing solutions for this hard but important problem.

[1]  Shahin Mohammadi,et al.  Low Rank Spectral Network Alignment , 2018, WWW.

[2]  Abdel Nasser,et al.  A Survey of the Quadratic Assignment Problem , 2014 .

[3]  Muriel Medard,et al.  Spectral Alignment of Graphs , 2016, IEEE Transactions on Network Science and Engineering.

[4]  Jure Leskovec,et al.  node2vec: Scalable Feature Learning for Networks , 2016, KDD.

[5]  Mark Heimann,et al.  Consistent Network Alignment with Node Embedding , 2020, ArXiv.

[6]  Edouard Grave,et al.  Unsupervised Alignment of Embeddings with Wasserstein Procrustes , 2018, AISTATS.

[7]  Shinji Umeyama,et al.  An Eigendecomposition Approach to Weighted Graph Matching Problems , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Jiejun Xu,et al.  Deep Adversarial Network Alignment , 2019, CIKM.

[9]  Aritra Konar,et al.  Graph Matching Via the Lens of Supermodularity , 2022, IEEE Transactions on Knowledge and Data Engineering.

[10]  Bonnie Berger,et al.  Pairwise Global Alignment of Protein Interaction Networks by Matching Neighborhood Topology , 2007, RECOMB.

[11]  Marco Cuturi,et al.  Sinkhorn Distances: Lightspeed Computation of Optimal Transport , 2013, NIPS.

[12]  Christos Faloutsos,et al.  SlashBurn: Graph Compression and Mining beyond Caveman Communities , 2014, IEEE Transactions on Knowledge and Data Engineering.

[13]  Minsu Cho,et al.  Reweighted Random Walks for Graph Matching , 2010, ECCV.

[14]  Yongtang Shi,et al.  Fifty years of graph matching, network alignment and network comparison , 2016, Inf. Sci..

[15]  Jian Pei,et al.  Asymmetric Transitivity Preserving Graph Embedding , 2016, KDD.

[16]  Meng Zhang,et al.  Earth Mover’s Distance Minimization for Unsupervised Bilingual Lexicon Induction , 2017, EMNLP.

[17]  Hongyuan Zha,et al.  Gromov-Wasserstein Learning for Graph Matching and Node Embedding , 2019, ICML.

[18]  Haesun Park,et al.  A Procrustes problem on the Stiefel manifold , 1999, Numerische Mathematik.

[19]  Jérôme Kunegis,et al.  KONECT: the Koblenz network collection , 2013, WWW.

[20]  Steven Skiena,et al.  HARP: Hierarchical Representation Learning for Networks , 2017, AAAI.

[21]  Haifeng Zhao,et al.  A sparse nonnegative matrix factorization technique for graph matching problems , 2014, Pattern Recognit..

[22]  Kevin Chen-Chuan Chang,et al.  A Comprehensive Survey of Graph Embedding: Problems, Techniques, and Applications , 2017, IEEE Transactions on Knowledge and Data Engineering.

[23]  Martial Hebert,et al.  An Integer Projected Fixed Point Method for Graph Matching and MAP Inference , 2009, NIPS.

[24]  David M. Mount,et al.  Isomorphism of graphs with bounded eigenvalue multiplicity , 1982, STOC '82.

[25]  Jian Li,et al.  Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec , 2017, WSDM.

[26]  Hanghang Tong,et al.  FINAL: Fast Attributed Network Alignment , 2016, KDD.

[27]  Jianbo Shi,et al.  Balanced Graph Matching , 2006, NIPS.

[28]  Jure Leskovec,et al.  Representation Learning on Graphs: Methods and Applications , 2017, IEEE Data Eng. Bull..

[29]  NICHOLAS ROUSE,et al.  COMPACT LIE GROUPS , 1998 .

[30]  Steven Skiena,et al.  DeepWalk: online learning of social representations , 2014, KDD.

[31]  Jason Altschuler,et al.  Near-linear time approximation algorithms for optimal transport via Sinkhorn iteration , 2017, NIPS.

[32]  Mario Vento,et al.  Thirty Years Of Graph Matching In Pattern Recognition , 2004, Int. J. Pattern Recognit. Artif. Intell..

[33]  P. Kelly A congruence theorem for trees. , 1957 .

[34]  Teofilo F. Gonzalez,et al.  P-Complete Approximation Problems , 1976, J. ACM.

[35]  Shuzhong Zhang,et al.  Maximum Block Improvement and Polynomial Optimization , 2012, SIAM J. Optim..

[36]  John E. Hopcroft,et al.  Linear time algorithm for isomorphism of planar graphs (Preliminary Report) , 1974, STOC '74.

[37]  Alexander J. Smola,et al.  Distributed large-scale natural graph factorization , 2013, WWW.

[38]  M. Zaslavskiy,et al.  A Path Following Algorithm for the Graph Matching Problem , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[39]  Qiongkai Xu,et al.  GraRep: Learning Graph Representations with Global Structural Information , 2015, CIKM.

[40]  Mark Heimann,et al.  REGAL: Representation Learning-based Graph Alignment , 2018, CIKM.

[41]  R. Burkard Quadratic Assignment Problems , 1984 .

[42]  Yoram Singer,et al.  Efficient projections onto the l1-ball for learning in high dimensions , 2008, ICML '08.

[43]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[44]  Jure Leskovec,et al.  {SNAP Datasets}: {Stanford} Large Network Dataset Collection , 2014 .

[45]  Fernando De la Torre,et al.  Factorized Graph Matching , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[46]  P. Schönemann,et al.  A generalized solution of the orthogonal procrustes problem , 1966 .

[47]  B. Korte,et al.  An Analysis of the Greedy Heuristic for Independence Systems , 1978 .