Simulation of fluid and particles flows: Asymptotic preserving schemes for bubbling and flowing regimes

In this work, we propose asymptotic preserving numerical schemes for the bubbling and flowing regimes of particles immersed in a fluid treated by two-phase flow models. The description comprises compressible Euler equations for the dense phase (fluid) and a kinetic Fokker-Planck equation for the disperse phase (particles) coupled through friction terms. We show numerical simulations in the relevant case of gravity in the one-dimensional case demonstrating the overall behavior of the schemes.

[1]  F. Spellman Combustion Theory , 2020 .

[2]  Frédéric Lagoutière,et al.  Numerical resolution of scalar convex equations : explicit stability, entropy and convergence conditions , 2001 .

[3]  Thierry Goudon,et al.  Stability and Asymptotic Analysis of a Fluid-Particle Interaction Model , 2006 .

[4]  Bruno Després,et al.  Generalized Harten Formalism and Longitudinal Variation Diminishing schemes for Linear Advection on Arbitrary Grids , 2001 .

[5]  Bruno Després,et al.  Liquid jet generation and break-up , 2005 .

[6]  Tov Elperin,et al.  Clustering of fuel droplets and quality of spray in diesel engines , 2003 .

[7]  Thierry Goudon,et al.  Numerical Schemes of Diffusion Asymptotics and Moment Closures for Kinetic Equations , 2008, J. Sci. Comput..

[8]  T. Goudon,et al.  Splitting Schemes for the Simulation of Non Equilibrium Radiative Flows , 2006 .

[9]  Ivana Vinkovic,et al.  Dispersion et mélange turbulents de particules solides et de gouttelettes par une simulation des grandes échelles et une modélisation stochastique lagrangienne , 2005 .

[10]  G. Toscani,et al.  Diiusive Relaxation Schemes for Discrete-velocity Kinetic Equations , 2007 .

[11]  F. Williams Spray Combustion and Atomization , 1958 .

[12]  Raimund Bürger,et al.  Model equations for gravitational sedimentation-consolidation processes , 2000 .

[13]  Lorenzo Pareschi,et al.  Diffusive Relaxation Schemes for Multiscale Discrete-Velocity Kinetic Equations , 1998 .

[14]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[15]  Shi Jin,et al.  Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations , 1999, SIAM J. Sci. Comput..

[16]  Philippe Villedieu,et al.  A HIERARCHY OF MODELS FOR TURBULENT DISPERSED TWO-PHASE FLOWS DERIVED FROM A KINETIC EQUATION FOR THE JOINT PARTICLE-GAS PDF ⁄ , 2007 .

[17]  Pierre-Emmanuel Jabin,et al.  Notes on Mathematical Problems on the Dynamics of Dispersed Particles Interacting through a Fluid , 2000 .

[18]  Raimund Bürger,et al.  Mathematical model and numerical simulation of the liquid fluidization of polydisperse solid particle mixtures , 2004 .

[19]  G. Falkovich,et al.  Acceleration of rain initiation by cloud turbulence , 2002, Nature.

[20]  Benoît Perthame,et al.  Kinetic formulation of conservation laws , 2002 .

[21]  Henar Herrero,et al.  On The Motion of Dispersed Balls in a Potential Flow: A Kinetic Description of the Added Mass Effect , 1999, SIAM J. Appl. Math..

[22]  Shi Jin,et al.  Uniformly Accurate Diffusive Relaxation Schemes for Multiscale Transport Equations , 2000, SIAM J. Numer. Anal..

[23]  Albert Einstein,et al.  On the Motion of Small Particles Suspended in Liquids at Rest Required by the Molecular-Kinetic Theory of Heat ∗ , 2004 .

[24]  N. SIAMJ. AN ASYMPTOTIC-INDUCED SCHEME FOR NONSTATIONARY TRANSPORT EQUATIONS IN THE DIFFUSIVE LIMIT , 1998 .

[25]  Simona Mancini,et al.  A MODELING OF BIOSPRAY FOR THE UPPER AIRWAYS , 2005 .

[26]  Antoine Mellet,et al.  GLOBAL WEAK SOLUTIONS FOR A VLASOV–FOKKER–PLANCK/NAVIER–STOKES SYSTEM OF EQUATIONS , 2007 .

[27]  Sergey Gavrilyuk,et al.  Kinetic model for the motion of compressible bubbles in a perfect fluid , 2002 .

[28]  Axel Klar An Asymptotic Preserving Numerical Scheme for Kinetic Equations in the Low Mach Number Limit , 1999 .

[29]  Frédéric Lagoutière A non-dissipative entropic scheme for convex scalar equations via discontinuous cell-reconstruction , 2004 .

[30]  George Papanicolaou,et al.  Dynamic Theory of Suspensions with Brownian Effects , 1983 .

[31]  Kamel Hamdache,et al.  Global existence and large time behaviour of solutions for the Vlasov-Stokes equations , 1998 .

[32]  B. Després,et al.  Un schéma non linéaire anti-dissipatif pour l'équation d'advection linéaire , 1999 .

[33]  T. Mexia,et al.  Author ' s personal copy , 2009 .

[34]  Bruno Després,et al.  Contact Discontinuity Capturing Schemes for Linear Advection and Compressible Gas Dynamics , 2002, J. Sci. Comput..

[35]  Antoine Mellet,et al.  Asymptotic Analysis for a Vlasov-Fokker-Planck/ Compressible Navier-Stokes System of Equations , 2008 .

[36]  B. M. Fulk MATH , 1992 .

[37]  Bruno Després,et al.  A longitudinal variation diminishing estimate for linear advection on arbitrary grids , 2001 .

[38]  Giuseppe Toscani,et al.  Exponential convergence toward equilibrium for homogeneous Fokker–Planck‐type equations , 1998 .

[39]  V. M. Teshukova,et al.  Kinetic model for the motion of compressible bubbles in a perfect fluid , 2002 .

[40]  Laurent Desvillettes,et al.  COUPLING EULER AND VLASOV EQUATIONS IN THE CONTEXT OF SPRAYS: THE LOCAL-IN-TIME, CLASSICAL SOLUTIONS , 2006 .

[41]  E. A. HARPER,et al.  High Temperature Structure of Plutonium Dicarbide , 1968, Nature.

[42]  Thierry Goudon,et al.  Hydrodynamic limit for the Vlasov-Navier-Stokes equations. Part I: Light particles regime , 2004 .

[43]  Thierry Goudon,et al.  On the modeling of the transport of particles in turbulent flows , 2004 .