Simulation of fluid and particles flows: Asymptotic preserving schemes for bubbling and flowing regimes
暂无分享,去创建一个
[1] F. Spellman. Combustion Theory , 2020 .
[2] Frédéric Lagoutière,et al. Numerical resolution of scalar convex equations : explicit stability, entropy and convergence conditions , 2001 .
[3] Thierry Goudon,et al. Stability and Asymptotic Analysis of a Fluid-Particle Interaction Model , 2006 .
[4] Bruno Després,et al. Generalized Harten Formalism and Longitudinal Variation Diminishing schemes for Linear Advection on Arbitrary Grids , 2001 .
[5] Bruno Després,et al. Liquid jet generation and break-up , 2005 .
[6] Tov Elperin,et al. Clustering of fuel droplets and quality of spray in diesel engines , 2003 .
[7] Thierry Goudon,et al. Numerical Schemes of Diffusion Asymptotics and Moment Closures for Kinetic Equations , 2008, J. Sci. Comput..
[8] T. Goudon,et al. Splitting Schemes for the Simulation of Non Equilibrium Radiative Flows , 2006 .
[9] Ivana Vinkovic,et al. Dispersion et mélange turbulents de particules solides et de gouttelettes par une simulation des grandes échelles et une modélisation stochastique lagrangienne , 2005 .
[10] G. Toscani,et al. Diiusive Relaxation Schemes for Discrete-velocity Kinetic Equations , 2007 .
[11] F. Williams. Spray Combustion and Atomization , 1958 .
[12] Raimund Bürger,et al. Model equations for gravitational sedimentation-consolidation processes , 2000 .
[13] Lorenzo Pareschi,et al. Diffusive Relaxation Schemes for Multiscale Discrete-Velocity Kinetic Equations , 1998 .
[14] A. Einstein. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.
[15] Shi Jin,et al. Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations , 1999, SIAM J. Sci. Comput..
[16] Philippe Villedieu,et al. A HIERARCHY OF MODELS FOR TURBULENT DISPERSED TWO-PHASE FLOWS DERIVED FROM A KINETIC EQUATION FOR THE JOINT PARTICLE-GAS PDF ⁄ , 2007 .
[17] Pierre-Emmanuel Jabin,et al. Notes on Mathematical Problems on the Dynamics of Dispersed Particles Interacting through a Fluid , 2000 .
[18] Raimund Bürger,et al. Mathematical model and numerical simulation of the liquid fluidization of polydisperse solid particle mixtures , 2004 .
[19] G. Falkovich,et al. Acceleration of rain initiation by cloud turbulence , 2002, Nature.
[20] Benoît Perthame,et al. Kinetic formulation of conservation laws , 2002 .
[21] Henar Herrero,et al. On The Motion of Dispersed Balls in a Potential Flow: A Kinetic Description of the Added Mass Effect , 1999, SIAM J. Appl. Math..
[22] Shi Jin,et al. Uniformly Accurate Diffusive Relaxation Schemes for Multiscale Transport Equations , 2000, SIAM J. Numer. Anal..
[23] Albert Einstein,et al. On the Motion of Small Particles Suspended in Liquids at Rest Required by the Molecular-Kinetic Theory of Heat ∗ , 2004 .
[24] N. SIAMJ.. AN ASYMPTOTIC-INDUCED SCHEME FOR NONSTATIONARY TRANSPORT EQUATIONS IN THE DIFFUSIVE LIMIT , 1998 .
[25] Simona Mancini,et al. A MODELING OF BIOSPRAY FOR THE UPPER AIRWAYS , 2005 .
[26] Antoine Mellet,et al. GLOBAL WEAK SOLUTIONS FOR A VLASOV–FOKKER–PLANCK/NAVIER–STOKES SYSTEM OF EQUATIONS , 2007 .
[27] Sergey Gavrilyuk,et al. Kinetic model for the motion of compressible bubbles in a perfect fluid , 2002 .
[28] Axel Klar. An Asymptotic Preserving Numerical Scheme for Kinetic Equations in the Low Mach Number Limit , 1999 .
[29] Frédéric Lagoutière. A non-dissipative entropic scheme for convex scalar equations via discontinuous cell-reconstruction , 2004 .
[30] George Papanicolaou,et al. Dynamic Theory of Suspensions with Brownian Effects , 1983 .
[31] Kamel Hamdache,et al. Global existence and large time behaviour of solutions for the Vlasov-Stokes equations , 1998 .
[32] B. Després,et al. Un schéma non linéaire anti-dissipatif pour l'équation d'advection linéaire , 1999 .
[33] T. Mexia,et al. Author ' s personal copy , 2009 .
[34] Bruno Després,et al. Contact Discontinuity Capturing Schemes for Linear Advection and Compressible Gas Dynamics , 2002, J. Sci. Comput..
[35] Antoine Mellet,et al. Asymptotic Analysis for a Vlasov-Fokker-Planck/ Compressible Navier-Stokes System of Equations , 2008 .
[36] B. M. Fulk. MATH , 1992 .
[37] Bruno Després,et al. A longitudinal variation diminishing estimate for linear advection on arbitrary grids , 2001 .
[38] Giuseppe Toscani,et al. Exponential convergence toward equilibrium for homogeneous Fokker–Planck‐type equations , 1998 .
[39] V. M. Teshukova,et al. Kinetic model for the motion of compressible bubbles in a perfect fluid , 2002 .
[40] Laurent Desvillettes,et al. COUPLING EULER AND VLASOV EQUATIONS IN THE CONTEXT OF SPRAYS: THE LOCAL-IN-TIME, CLASSICAL SOLUTIONS , 2006 .
[41] E. A. HARPER,et al. High Temperature Structure of Plutonium Dicarbide , 1968, Nature.
[42] Thierry Goudon,et al. Hydrodynamic limit for the Vlasov-Navier-Stokes equations. Part I: Light particles regime , 2004 .
[43] Thierry Goudon,et al. On the modeling of the transport of particles in turbulent flows , 2004 .