Cavity-Enhanced Raman Spectroscopy for Food Chain Management

Comprehensive food chain management requires the monitoring of many parameters including temperature, humidity, and multiple gases. The latter is highly challenging because no low-cost technology for the simultaneous chemical analysis of multiple gaseous components currently exists. This contribution proposes the use of cavity enhanced Raman spectroscopy to enable online monitoring of all relevant components using a single laser source. A laboratory scale setup is presented and characterized in detail. Power enhancement of the pump light is achieved in an optical resonator with a Finesse exceeding 2500. A simulation for the light scattering behavior shows the influence of polarization on the spatial distribution of the Raman scattered light. The setup is also used to measure three relevant showcase gases to demonstrate the feasibility of the approach, including carbon dioxide, oxygen and ethene.

[1]  Jürgen Popp,et al.  Fast and highly sensitive fiber-enhanced Raman spectroscopic monitoring of molecular H2 and CH4 for point-of-care diagnosis of malabsorption disorders in exhaled human breath. , 2015, Analytical chemistry.

[2]  N. Bloembergen,et al.  THE STIMULATED RAMAN EFFECT. , 1967 .

[3]  H. Kogelnik,et al.  Laser beams and resonators. , 1966, Applied optics.

[4]  John L. Hall,et al.  Laser phase and frequency stabilization using an optical resonator , 1983 .

[5]  Roy Scott Hickman,et al.  Intracavity Laser Raman Spectroscopy Using a Commercial Laser , 1973 .

[6]  E. Abad,et al.  RFID smart tag for traceability and cold chain monitoring of foods: Demonstration in an intercontinental fresh fish logistic chain , 2009 .

[7]  Walter Lang,et al.  Sea transport of bananas in containers – Parameter identification for a temperature model , 2013 .

[8]  Samuel Hammer,et al.  Assessment of a multi-species in situ FTIR for precise atmospheric greenhouse gas observations , 2012 .

[9]  A. K. Thompson,et al.  Effect of reduced O2 and increased CO2 (controlled atmosphere storage) on the ripening and quality of ethylene treated banana fruit , 2001 .

[10]  D. Petrov,et al.  Multipass optical system for a Raman gas spectrometer. , 2016, Applied optics.

[11]  S. Harris,et al.  Detection of atomic oxygen by intracavity spectroscopy. , 1981, Optics letters.

[12]  Johannes Kiefer,et al.  Design and characterization of a Raman-scattering-based sensor system for temporally resolved gas analysis and its application in a gas turbine power plant , 2008 .

[13]  John M. Hayes,et al.  Isotope-ratio-monitoring gas chromatography-mass spectrometry , 1978 .

[14]  Jürgen Wöllenstein,et al.  Monitoring the Wobbe Index of Natural Gas Using Fiber-Enhanced Raman Spectroscopy , 2017, Sensors.

[15]  A. Mulac,et al.  Retroreflecting multipass cell for Raman scattering. , 1977, Applied optics.

[16]  Vladimir S. Ilchenko,et al.  On cavity modification of stimulated Raman scattering , 2003 .

[17]  Masamori Endo,et al.  Performance Characteristics of Power Build-Up Cavity for Raman Spectroscopic Measurement , 2003 .

[18]  Stefan Palzer,et al.  Photoacoustic-based detector for infrared laser spectroscopy , 2016 .

[19]  Jean-Pierre Emond,et al.  Application of RFID technologies in the temperature mapping of the pineapple supply chain , 2008 .

[20]  Rakesh Pandey,et al.  Role of internal atmosphere on fruit ripening and storability—a review , 2014, Journal of Food Science and Technology.

[21]  M. P. Buric,et al.  Raman sensing of fuel gases using a reflective coating capillary optical fiber , 2009, Defense + Commercial Sensing.

[22]  Young Joong Yoon,et al.  Functional antenna integrated with relative humidity sensor using synthesised polyimide for passive RFID sensing , 2007 .

[23]  G. A. Eiceman Instrumentation for Gas Chromatography , 1957, Nature.

[24]  K. S. Krishnan,et al.  A New Type of Secondary Radiation , 1928, Nature.

[25]  Markus W. Sigrist,et al.  Selection criteria for microphones used in pulsed nonresonant gas-phase photoacoustics , 1999 .

[26]  A. Mooradian,et al.  Laser Raman Spectroscopy , 1971, Nature.

[27]  A. B. Harvey,et al.  Modification of a Commercial Argon Ion Laser for Enhancement of Gas Phase Raman Scattering , 1972 .

[28]  Sebastian Wolf,et al.  Neue Methoden der laserbasierten Gasanalytik , 2016 .

[29]  N. Bârsan,et al.  Electronic nose: current status and future trends. , 2008, Chemical reviews.

[30]  P. Griffiths Fourier Transform Infrared Spectrometry , 2007 .

[31]  Richard L. McCreery,et al.  Raman Spectroscopy for Chemical Analysis , 2000 .

[32]  R. Tatam,et al.  Optical gas sensing: a review , 2012 .

[33]  Yuhui Xu,et al.  A One ppm NDIR Methane Gas Sensor with Single Frequency Filter Denoising Algorithm , 2012, Sensors.

[34]  Eric D. Black Notes on the Pound-Drever-Hall technique , 1998 .

[35]  Jordi Fonollosa,et al.  Ethylene optical spectrometer for apple ripening monitoring in controlled atmosphere store-houses , 2009 .

[36]  W. Tolles,et al.  A Review of the Theory and Application of Coherent Anti-Stokes Raman Spectroscopy (CARS) , 1977 .

[37]  Dong Xiang,et al.  Metal Oxide Gas Sensors: Sensitivity and Influencing Factors , 2010, Sensors.

[38]  E. Black An introduction to Pound–Drever–Hall laser frequency stabilization , 2001 .

[39]  Jürgen Wöllenstein,et al.  Low-cost gas sensing system for the reliable and precise measurement of methane, carbon dioxide and hydrogen sulfide in natural gas and biomethane , 2016 .

[40]  Jürgen Popp,et al.  All-in-one: a versatile gas sensor based on fiber enhanced Raman spectroscopy for monitoring postharvest fruit conservation and ripening. , 2016, The Analyst.

[41]  Mikal E. Saltveit,et al.  Effect of ethylene on quality of fresh fruits and vegetables , 1999 .

[42]  D. Steck Rubidium 85 D Line Data , 2008 .

[43]  Jürgen Wöllenstein,et al.  New method to selectively determine hydrogen sulfide concentrations using CuO layers , 2016 .

[44]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[45]  Michael Hippler,et al.  Cavity-Enhanced Raman Spectroscopy of Natural Gas with Optical Feedback cw-Diode Lasers. , 2015, Analytical chemistry.

[46]  Bernhard Schrader,et al.  Infrared and Raman spectroscopy : methods and applications , 1995 .

[47]  M. Morris,et al.  Infrared and Raman Spectroscopy , 2000 .

[48]  Joseph J. Barrett,et al.  Laser-Excited Rotation–Vibration Raman Scattering in Ultra-Small Gas Samples* , 1968 .

[49]  Robert L. Grob,et al.  Modern Practice of Gas Chromatography , 1995 .

[50]  S. P. S. Porto,et al.  Cross section for the Raman effect in molecular nitrogen gas , 1973 .

[51]  Theodor W. Hänsch,et al.  A compact grating-stabilized diode laser system for atomic physics , 1995 .

[52]  R. Gane,et al.  Production of Ethylene by Some Ripening Fruits , 1934, Nature.

[53]  S P Burg,et al.  Role of Ethylene in Fruit Ripening. , 1962, Plant physiology.

[54]  Torkil Holm,et al.  Aspects of the mechanism of the flame ionization detector , 1999 .

[55]  Jürgen Schüttler,et al.  Demonstration of a signal enhanced fast Raman sensor for multi‐species gas analyses at a low pressure range for anesthesia monitoring , 2015 .

[56]  Philipp Klein,et al.  Odor-Sensing System to Support Social Participation of People Suffering from Incontinence , 2016, Sensors.

[57]  Jack C. Demirgian Gas chromatography—Fourier transform infrared spectroscopy—mass spectrometry. A powerful tool for component identification in complex organic mixtures , 1987 .

[58]  J. Popp,et al.  Surface-enhanced Raman spectroscopy , 2009, Analytical and bioanalytical chemistry.

[59]  J. Kneer,et al.  Apparatus to characterize gas sensor response under real-world conditions in the lab. , 2014, The Review of scientific instruments.

[60]  M. Moskovits Surface-Enhanced Raman Spectroscopy: a Brief Perspective , 2006 .

[61]  Mehdi Rouissat,et al.  Free Space Optical Channel Characterization and Modeling with Focus on Algeria Weather Conditions , 2012 .

[62]  Michael Hippler,et al.  Cavity-enhanced Raman spectroscopy with optical feedback cw diode lasers for gas phase analysis and spectroscopy. , 2012, The Analyst.

[63]  Jürgen Wöllenstein,et al.  Specific, trace gas induced phase transition in copper(II)oxide for highly selective gas sensing , 2014 .

[64]  Jürgen Wöllenstein,et al.  Miniature Low-Cost Carbon Dioxide Sensor for Mobile Devices , 2017, IEEE Sensors Journal.

[65]  Jürgen Popp,et al.  Online investigation of respiratory quotients in Pinus sylvestris and Picea abies during drought and shading by means of cavity-enhanced Raman multi-gas spectrometry. , 2015, The Analyst.

[66]  Ralph P. Tatam,et al.  Non-dispersive infra-red (NDIR) measurement of carbon dioxide at 4.2μm in a compact and optically efficient sensor , 2013 .

[67]  Yukihiro Ozaki,et al.  Plasmon-enhanced spectroscopy of absorption and spontaneous emissions explained using cavity quantum optics. , 2017, Chemical Society reviews.

[68]  Barbara S. Larsen,et al.  Gas Chromatography and Mass Spectrometry: A Practical Guide , 1996 .

[69]  P Repa,et al.  Analyses of gas composition in vacuum systems by mass spectrometry. , 2002, Journal of mass spectrometry : JMS.

[70]  J. Taran,et al.  Gas Concentration Measurement by Coherent Raman Anti-Stokes Scattering , 1974 .

[71]  Jürgen Wöllenstein,et al.  Manipulating the gas–surface interaction between copper(II) oxide and mono-nitrogen oxides using temperature , 2016 .

[72]  Derek A. Long,et al.  The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules , 2001 .

[73]  Jürgen Popp,et al.  Fiber-enhanced Raman multigas spectroscopy: a versatile tool for environmental gas sensing and breath analysis. , 2014, Analytical chemistry.

[74]  J. Stone,et al.  cw Raman fiber amplifier , 1975 .

[75]  Azer P Yalin,et al.  Cavity-enhanced rotational Raman scattering in gases using a 20  mW near-infrared fiber laser. , 2016, Optics letters.

[76]  P A Roos,et al.  Widely tunable continuous-wave Raman laser in diatomic hydrogen pumped by an external-cavity diode laser. , 2000, Optics letters.

[77]  R. Huerta,et al.  Temperature optimization of metal oxide sensor arrays using Mutual Information , 2013 .