Robustness of Cellular Functions

[1]  J. Stelling,et al.  Robustness properties of circadian clock architectures. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[2]  J. Doyle,et al.  Bow Ties, Metabolism and Disease , 2022 .

[3]  Jason A. Papin,et al.  Comparison of network-based pathway analysis methods. , 2004, Trends in biotechnology.

[4]  A. Kansal Modeling approaches to type 2 diabetes. , 2004, Diabetes technology & therapeutics.

[5]  Lan V. Zhang,et al.  Evidence for dynamically organized modularity in the yeast protein–protein interaction network , 2004, Nature.

[6]  J. Raser,et al.  Control of Stochasticity in Eukaryotic Gene Expression , 2004, Science.

[7]  C. Pál,et al.  Metabolic network analysis of the causes and evolution of enzyme dispensability in yeast , 2004, Nature.

[8]  Nicholas T Ingolia,et al.  Topology and Robustness in the Drosophila Segment Polarity Network , 2004, PLoS biology.

[9]  Markus J. Herrgård,et al.  Integrating high-throughput and computational data elucidates bacterial networks , 2004, Nature.

[10]  R. Christopher,et al.  Data‐Driven Computer Simulation of Human Cancer Cell , 2004, Annals of the New York Academy of Sciences.

[11]  D. Schaffer,et al.  The sonic hedgehog signaling system as a bistable genetic switch. , 2004, Biophysical journal.

[12]  A. E. Hirsh,et al.  Noise Minimization in Eukaryotic Gene Expression , 2004, PLoS biology.

[13]  R. Milo,et al.  Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[14]  J. Vilar,et al.  From molecular noise to behavioural variability in a single bacterium , 2004, Nature.

[15]  H. Berg,et al.  Functional interactions between receptors in bacterial chemotaxis , 2004, Nature.

[16]  Roded Sharan,et al.  Revealing modularity and organization in the yeast molecular network by integrated analysis of highly heterogeneous genomewide data. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[17]  H. Kitano Cancer as a robust system: implications for anticancer therapy , 2004, Nature Reviews Cancer.

[18]  A. Barabasi,et al.  Global organization of metabolic fluxes in the bacterium Escherichia coli , 2004, Nature.

[19]  U. Sauer,et al.  The Soluble and Membrane-bound Transhydrogenases UdhA and PntAB Have Divergent Functions in NADPH Metabolism of Escherichia coli* , 2004, Journal of Biological Chemistry.

[20]  R. May Uses and Abuses of Mathematics in Biology , 2004, Science.

[21]  Eduardo Sontag,et al.  Untangling the wires: A strategy to trace functional interactions in signaling and gene networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[22]  U. Sauer High-throughput phenomics: experimental methods for mapping fluxomes. , 2004, Current opinion in biotechnology.

[23]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[24]  Adam P Arkin,et al.  Design and Diversity in Bacterial Chemotaxis: A Comparative Study in Escherichia coli and Bacillus subtilis , 2004, PLoS biology.

[25]  Jan Ihmels,et al.  Principles of transcriptional control in the metabolic network of Saccharomyces cerevisiae , 2004, Nature Biotechnology.

[26]  Matthew W. Hahn,et al.  Molecular Evolution in Large Genetic Networks: Does Connectivity Equal Constraint? , 2004, Journal of Molecular Evolution.

[27]  J. Lolkema,et al.  CcpA-Dependent Carbon Catabolite Repression in Bacteria , 2003, Microbiology and Molecular Biology Reviews.

[28]  Naama Barkai,et al.  Self-enhanced ligand degradation underlies robustness of morphogen gradients. , 2003, Developmental cell.

[29]  J. W. Campbell,et al.  Experimental Determination and System Level Analysis of Essential Genes in Escherichia coli MG1655 , 2003, Journal of bacteriology.

[30]  Reinhart Heinrich,et al.  The Roles of APC and Axin Derived from Experimental and Theoretical Analysis of the Wnt Pathway , 2003, PLoS biology.

[31]  G. Wagner,et al.  EVOLUTION AND DETECTION OF GENETIC ROBUSTNESS , 2003 .

[32]  Paul Nurse,et al.  Systems biology: Understanding cells , 2003, Nature.

[33]  H. Othmer,et al.  The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. , 2003, Journal of theoretical biology.

[34]  X. Gu Evolution of duplicate genes versus genetic robustness against null mutations. , 2003, Trends in genetics : TIG.

[35]  D. Pe’er,et al.  Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data , 2003, Nature Genetics.

[36]  Mads Kærn,et al.  Noise in eukaryotic gene expression , 2003, Nature.

[37]  Eduardo Sontag,et al.  Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2 , 2003, Nature Cell Biology.

[38]  U. Sauer,et al.  Metabolic flux profiling of Escherichia coli mutants in central carbon metabolism using GC-MS. , 2003, European journal of biochemistry.

[39]  R. Allada Circadian Clocks A Tale of Two Feedback Loops , 2003, Cell.

[40]  Michael W. Young,et al.  vrille, Pdp1, and dClock Form a Second Feedback Loop in the Drosophila Circadian Clock , 2003, Cell.

[41]  R. Lenski,et al.  Parallel changes in gene expression after 20,000 generations of evolution in Escherichia coli , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Alexander Rives,et al.  Modular organization of cellular networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[43]  John J. Tyson,et al.  Hysteresis drives cell-cycle transitions in Xenopus laevis egg extracts , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Pablo A. Iglesias,et al.  Quantifying robustness of biochemical network models , 2002, BMC Bioinformatics.

[45]  S. Schuster,et al.  Metabolic network structure determines key aspects of functionality and regulation , 2002, Nature.

[46]  Jeff Hasty,et al.  Engineered gene circuits , 2002, Nature.

[47]  Nicola J. Rinaldi,et al.  Transcriptional Regulatory Networks in Saccharomyces cerevisiae , 2002, Science.

[48]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[49]  N. Barkai,et al.  Robustness of the BMP morphogen gradient in Drosophila embryonic patterning , 2022 .

[50]  A. Barabasi,et al.  Hierarchical Organization of Modularity in Metabolic Networks , 2002, Science.

[51]  P. Swain,et al.  Stochastic Gene Expression in a Single Cell , 2002, Science.

[52]  Yaniv Ziv,et al.  Revealing modular organization in the yeast transcriptional network , 2002, Nature Genetics.

[53]  Ronald W. Davis,et al.  Functional profiling of the Saccharomyces cerevisiae genome , 2002, Nature.

[54]  G. Odell,et al.  Robustness, Flexibility, and the Role of Lateral Inhibition in the Neurogenic Network , 2002, Current Biology.

[55]  J. Doyle,et al.  Robustness as a measure of plausibility in models of biochemical networks. , 2002, Journal of theoretical biology.

[56]  S. Shen-Orr,et al.  Network motifs in the transcriptional regulation network of Escherichia coli , 2002, Nature Genetics.

[57]  E. Gilles,et al.  Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors , 2002, Nature Biotechnology.

[58]  J. Doyle,et al.  Reverse Engineering of Biological Complexity , 2002, Science.

[59]  H. Kitano Systems Biology: A Brief Overview , 2002, Science.

[60]  D. Krakauer,et al.  Redundancy, antiredundancy, and the robustness of genomes , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[61]  U. Sauer,et al.  Metabolic Flux Responses to Pyruvate Kinase Knockout in Escherichia coli , 2002, Journal of bacteriology.

[62]  John Doyle,et al.  Complexity and robustness , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[63]  Hierarchical Organization of Modularity in Metabolic Networks Supporting Online Material , 2002 .

[64]  S. Shen-Orr,et al.  Networks Network Motifs : Simple Building Blocks of Complex , 2002 .

[65]  N. Ben-Tal,et al.  Multi-stage regulation, a key to reliable adaptive biochemical pathways. , 2001, Biophysical journal.

[66]  G. Edelman,et al.  Degeneracy and complexity in biological systems , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[67]  S. Bornholdt Modeling Genetic Networks and Their Evolution: A Complex Dynamical Systems Perspective , 2001, Biological chemistry.

[68]  M. Thattai,et al.  Intrinsic noise in gene regulatory networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[69]  B. Séraphin,et al.  Positive feedback in eukaryotic gene networks: cell differentiation by graded to binary response conversion , 2001, The EMBO journal.

[70]  B. Garvik,et al.  Principles for the buffering of genetic variation. , 2001 .

[71]  R. Brent,et al.  Modelling cellular behaviour , 2001, Nature.

[72]  R. Guimer,et al.  Communication and optimal hierarchical networks , 2001 .

[73]  H. McAdams,et al.  Global analysis of the genetic network controlling a bacterial cell cycle. , 2000, Science.

[74]  M. Freeman Feedback control of intercellular signalling in development , 2000, Nature.

[75]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[76]  A. Barabasi,et al.  Error and attack tolerance of complex networks , 2000, Nature.

[77]  G. Odell,et al.  The segment polarity network is a robust developmental module , 2000, Nature.

[78]  M. Ehrenberg,et al.  Stochastic focusing: fluctuation-enhanced sensitivity of intracellular regulation. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[79]  L. Serrano,et al.  Engineering stability in gene networks by autoregulation , 2000, Nature.

[80]  D. Lauffenburger Cell signaling pathways as control modules: complexity for simplicity? , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[81]  J. Doyle,et al.  Robust perfect adaptation in bacterial chemotaxis through integral feedback control. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[82]  Doyle,et al.  Highly optimized tolerance: robustness and design in complex systems , 2000, Physical review letters.

[83]  S. Leibler,et al.  An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells. , 2000, Science.

[84]  M. Elowitz,et al.  A synthetic oscillatory network of transcriptional regulators , 2000, Nature.

[85]  J. Collins,et al.  Construction of a genetic toggle switch in Escherichia coli , 2000, Nature.

[86]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[87]  Mark Johnston,et al.  Function and Regulation of Yeast Hexose Transporters , 1999, Microbiology and Molecular Biology Reviews.

[88]  James E. Bailey,et al.  Lessons from metabolic engineering for functional genomics and drug discovery , 1999, Nature Biotechnology.

[89]  U. Alon,et al.  Robustness in bacterial chemotaxis , 2022 .

[90]  J M Carlson,et al.  Highly optimized tolerance: a mechanism for power laws in designed systems. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[91]  A. Goldbeter,et al.  A Model for Circadian Rhythms in Drosophila Incorporating the Formation of a Complex between the PER and TIM Proteins , 1998, Journal of biological rhythms.

[92]  M. B,et al.  Bifurcation Analysis of a Model of Mitotic Control in Frog Eggs , 1998 .

[93]  S. Leibler,et al.  Robustness in simple biochemical networks , 1997, Nature.

[94]  M. Ptashne,et al.  Transcriptional activation by recruitment , 1997, Nature.

[95]  A. Arkin,et al.  Stochastic mechanisms in gene expression. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[96]  Chi-Ying F. Huang,et al.  Ultrasensitivity in the mitogen-activated protein kinase cascade. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[97]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[98]  H. Kacser,et al.  The control of flux. , 1995, Biochemical Society transactions.

[99]  P. O’Farrell,et al.  The making of a maggot: patterning the Drosophila embryonic epidermis. , 1994, Current opinion in genetics & development.

[100]  Edda Klipp,et al.  Systems Biology , 1994 .

[101]  H. Berg,et al.  Bacterial motility and signal transduction , 1993, Cell.

[102]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[103]  M. Savageau Comparison of classical and autogenous systems of regulation in inducible operons , 1974, Nature.

[104]  M. Savageau,et al.  Parameter Sensitivity as a Criterion for Evaluating and Comparing the Performance of Biochemical Systems , 1971, Nature.

[105]  C. Waddington Canalization of Development and the Inheritance of Acquired Characters , 1942, Nature.