Coherent Optical-Fiber Link Across Italy and France

[1]  A. Takamizawa,et al.  First uncertainty evaluation of the cesium fountain primary frequency standard NMIJ-F2 , 2022, Metrologia.

[2]  R. A. Williams,et al.  Comparing ultrastable lasers at 7 × 10−17 fractional frequency instability through a 2220 km optical fibre network , 2022, Nature Communications.

[3]  I. Sesia,et al.  Robustness tests for an optical time scale , 2021, Metrologia.

[4]  D. Yu,et al.  Absolute frequency measurement of the 171Yb optical lattice clock at KRISS using TAI for over a year , 2021, Metrologia.

[5]  E. Oelker,et al.  Frequency ratio measurements at 18-digit accuracy using an optical clock network , 2021, Nature.

[6]  E. Cantin,et al.  An accurate and robust metrological network for coherent optical frequency dissemination , 2021, New Journal of Physics.

[7]  G. Petit Sub-10–16 accuracy GNSS frequency transfer with IPPP , 2021, GPS Solutions.

[8]  Marco Lucamarini,et al.  Coherent phase transfer for real-world twin-field quantum key distribution , 2020, Nature Communications.

[9]  D. Akamatsu,et al.  Demonstration of the nearly continuous operation of an 171Yb optical lattice clock for half a year , 2020, Metrologia.

[10]  G. Petit,et al.  Intercontinental comparison of optical atomic clocks through very long baseline interferometry , 2020, Nature Physics.

[11]  T. Gotoh,et al.  Absolute frequency of 87Sr at 1.8 × 10−16 uncertainty by reference to remote primary frequency standards , 2020, Metrologia.

[12]  Davide Calonico,et al.  Absolute frequency measurement of the 1S0–3P0 transition of 171Yb with a link to international atomic time , 2020, Metrologia.

[13]  H. Shinkai,et al.  Test of general relativity by a pair of transportable optical lattice clocks , 2020 .

[14]  E. Cantin,et al.  Combining fiber Brillouin amplification with a repeater laser station for fiber-based optical frequency dissemination over 1400 km , 2019, New Journal of Physics.

[15]  I. Sesia,et al.  Direct comparisons of European primary and secondary frequency standards via satellite techniques , 2019, Metrologia.

[16]  J. Lodewyck On a definition of the SI second with a set of optical clock transitions , 2019, Metrologia.

[17]  E. A. Curtis,et al.  Search for transient variations of the fine structure constant and dark matter using fiber-linked optical atomic clocks , 2019, New Journal of Physics.

[18]  G Panfilo,et al.  The Coordinated Universal Time (UTC) , 2019, Metrologia.

[19]  A. Ludlow,et al.  Atomic clock performance enabling geodesy below the centimetre level , 2018, Nature.

[20]  E. Peik,et al.  Optical clock comparison for Lorentz symmetry testing , 2018, Nature.

[21]  USA,et al.  Advances in the accuracy, stability, and reliability of the PTB primary fountain clocks , 2018, Metrologia.

[22]  T. Südmeyer,et al.  First uncertainty evaluation of the FoCS-2 primary frequency standard , 2018 .

[23]  Y. Hanado,et al.  Months-long real-time generation of a time scale based on an optical clock , 2018, Scientific Reports.

[24]  P. Schmidt,et al.  Atomic clocks for geodesy , 2018, Reports on progress in physics. Physical Society.

[25]  Patrick Gill,et al.  The CIPM list of recommended frequency standard values: guidelines and procedures , 2018 .

[26]  M. Zucco,et al.  Geodesy and metrology with a transportable optical clock , 2017, 1705.04089.

[27]  D. S. Kupalov,et al.  Budget of Uncertainties in the Cesium Frequency Frame of Fountain Type , 2017 .

[28]  P. Rosenbusch,et al.  First international comparison of fountain primary frequency standards via a long distance optical fiber link , 2017, 1703.02892.

[29]  Federico Perini,et al.  A VLBI experiment using a remote atomic clock via a coherent fibre link , 2017, Scientific Reports.

[30]  C. Guerlin,et al.  Determination of a high spatial resolution geopotential model using atomic clock comparisons , 2016, Journal of Geodesy.

[31]  Davide Calonico,et al.  Absolute frequency measurement of the 1S0 – 3P0 transition of 171Yb , 2016, 1609.01610.

[32]  Y. Kuroishi,et al.  Geopotential measurements with synchronously linked optical lattice clocks , 2016, Nature Photonics.

[33]  Patrick Gill,et al.  Is the time right for a redefinition of the second by optical atomic clocks? , 2016 .

[34]  Eva Bookjans,et al.  Optical to microwave clock frequency ratios with a nearly continuous strontium optical lattice clock , 2016, 1605.03878.

[35]  E. Bookjans,et al.  Comparing a mercury optical lattice clock with microwave and optical frequency standards , 2016, 1603.02026.

[36]  E. Bookjans,et al.  A clock network for geodesy and fundamental science , 2015, Nature Communications.

[37]  Ping Wang,et al.  NIM5 Cs fountain clock and its evaluation , 2015 .

[38]  P. Jetzer,et al.  Ground-based optical atomic clocks as a tool to monitor vertical surface motion , 2015, 1506.02457.

[39]  Felix Perosanz,et al.  1 × 10−16 frequency transfer by GPS PPP with integer ambiguity resolution , 2015 .

[40]  Manoj Das,et al.  Cryogenic optical lattice clocks , 2015, Nature Photonics.

[41]  M. Abgrall,et al.  Quantum cascade laser frequency stabilization at the sub-Hz level , 2014, Nature Photonics.

[42]  Davide Calonico,et al.  Accuracy evaluation of ITCsF2: a nitrogen cooled caesium fountain , 2014 .

[43]  M Fujieda,et al.  Carrier-phase two-way satellite frequency transfer over a very long baseline , 2014, 1403.3193.

[44]  Michel Abgrall,et al.  Contributing to TAI with a secondary representation of the SI second , 2014, 1401.7976.

[45]  Ruoxin Li,et al.  Improved accuracy of the NPL-CsF2 primary frequency standard: evaluation of distributed cavity phase and microwave lensing frequency shifts , 2011, 1107.2412.

[46]  Giuseppe Marra,et al.  First accuracy evaluation of the NRC-FCs2 primary frequency standard , 2010, Metrologia.

[47]  R. Dach,et al.  Comparison between frequency standards in Europe and the USA at the 10−15 uncertainty level , 2006 .

[48]  H. Telle,et al.  Kerr-lens, mode-locked lasers as transfer oscillators for optical frequency measurements , 2001, physics/0107037.