Pulsed laser ablation has attracted great attention over the past few years as promising technique for depositing thin films. A large variety of successful experimental results were obtained in this field, including the growth of high- temperature superconducting films, ferroelectric films, oxides, semiconductors, diamonds, etc. One of the main advantages of this technology is the simplicity of the experimental set-up. In a common configuration, the laser- generated flux of particles is collected on a planar substrate positioned parallel to the irradiated surface. Several modifications, like simultaneous generation of two plumes from different targets (double ablation), were proposed. Different lasers (e.g. KrF with (lambda) equals 248 nm, Nd-YAG with (lambda) equals 532 nm, etc.) with energy density 2 - 10 J/cm2 were used in the ablation experiments both in vacuum and into diluted ambient gas (pressure up to 750 mTorr). Monte Carlo simulation was found to be a successful technique for theoretical investigations of the laser ablation processes. This method has allowed us to investigate the influence of elastic collisions and chemical reactions in the laser ablated plume on the angular characteristics of the flow. The results of the simulation show that elastic collisions give rise to focusing of particles towards the surface normal and to the redirection of the velocities of the more energetic particles in the direction close to the surface normal. The chemical reactions are found to influence the angular distributions in the way opposite to the one of elastic collisions. The reaction heat contributes to the energy of particles and the velocity distributions are affected by reactions. As result of these processes, the angular distributions are broadened from the surface normal. Additional collisions with the particles of the ambient gas were shown to influence the composition and uniformity of thin films. The study of these processes is of a particular interest for the developing of pulsed laser deposition (PLD) technique.