Source Localization and Sensing: A Nonparametric Iterative Adaptive Approach Based on Weighted Least Squares

Array processing is widely used in sensing applications for estimating the locations and waveforms of the sources in a given field. In the absence of a large number of snapshots, which is the case in numerous practical applications, such as underwater array processing, it becomes challenging to estimate the source parameters accurately. This paper presents a nonparametric and hyperparameter, free-weighted, least squares-based iterative adaptive approach for amplitude and phase estimation (IAA-APES) in array processing. IAA-APES can work well with few snapshots (even one), uncorrelated, partially correlated, and coherent sources, and arbitrary array geometries. IAA-APES is extended to give sparse results via a model-order selection tool, the Bayesian information criterion (BIC). Moreover, it is shown that further improvements in resolution and accuracy can be achieved by applying the parametric relaxation-based cyclic approach (RELAX) to refine the IAA-APES&BIC estimates if desired. IAA-APES can also be applied to active sensing applications, including single-input single-output (SISO) radar/sonar range-Doppler imaging and multi-input single-output (MISO) channel estimation for communications. Simulation results are presented to evaluate the performance of IAA-APES for all of these applications, and IAA-APES is shown to outperform a number of existing approaches.

[1]  Jr William M. Humphreys,et al.  Design and Use of Microphone Directional Arrays for Aeroacoustic Measurements , 1998 .

[2]  G. Deane,et al.  Surface wave focusing and acoustic communications in the surf zone , 2004 .

[3]  J.C. Preisig,et al.  Estimation and Equalization of Rapidly Varying Sparse Acoustic Communication Channels , 2006, OCEANS 2006.

[4]  Jean-Jacques Fuchs,et al.  On sparse representations in arbitrary redundant bases , 2004, IEEE Transactions on Information Theory.

[5]  Dmitry M. Malioutov,et al.  A sparse signal reconstruction perspective for source localization with sensor arrays , 2005, IEEE Transactions on Signal Processing.

[6]  Jean-Jacques Fuchs,et al.  On the application of the global matched filter to DOA estimation with uniform circular arrays , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[7]  D. Dey,et al.  Estimation of a covariance matrix under Stein's loss , 1985 .

[8]  Charles A. Stutt,et al.  A 'best' mismatched filter response for radar clutter discrimination , 1968, IEEE Trans. Inf. Theory.

[9]  Jian Li,et al.  Angle and waveform estimation via RELAX , 1997, IEEE Transactions on Aerospace and Electronic Systems.

[10]  Jian Li,et al.  Doubly constrained robust Capon beamformer , 2004, IEEE Transactions on Signal Processing.

[11]  Peter Bühlmann Regression shrinkage and selection via the Lasso: a retrospective (Robert Tibshirani): Comments on the presentation , 2011 .

[12]  C. Stein,et al.  Estimation with Quadratic Loss , 1992 .

[13]  Y. Selen,et al.  Model-order selection: a review of information criterion rules , 2004, IEEE Signal Processing Magazine.

[14]  A. Lee Swindlehurst,et al.  A Performance Analysis ofSubspace-Based Methods in thePresence of Model Errors { Part I : The MUSIC AlgorithmA , 1992 .

[15]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[16]  P. Stoica,et al.  Sparsity constrained deconvolution approaches for acoustic source mapping. , 2008, The Journal of the Acoustical Society of America.

[17]  Bhaskar D. Rao,et al.  Sparse channel estimation via matching pursuit with application to equalization , 2002, IEEE Trans. Commun..

[18]  Andreas Jakobsson,et al.  Matched-filter bank interpretation of some spectral estimators , 1998, Signal Process..

[19]  Thomas F. Brooks,et al.  A Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) Determined from Phased Microphone Arrays , 2004 .

[20]  D. O. Thompson,et al.  Review of Progress in Quantitative Nondestructive Evaluation , 1985 .

[21]  Petre Stoica,et al.  Spectral Analysis of Signals , 2009 .

[22]  Nadav Levanon,et al.  Cross-correlation of long binary signals with longer mismatched filters , 2005 .

[23]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[24]  K. Gerlach,et al.  Doppler-compensated adaptive pulse compression , 2006, 2006 IEEE Conference on Radar.

[25]  John G. Proakis,et al.  Digital Communications , 1983 .

[26]  H. Cox,et al.  Passive sonar limits upon nulling multiple moving ships with large aperture arrays , 1999, Conference Record of the Thirty-Third Asilomar Conference on Signals, Systems, and Computers (Cat. No.CH37020).

[27]  Milica Stojanovic,et al.  Sparse equalization for real-time digital underwater acoustic communications , 1995, 'Challenges of Our Changing Global Environment'. Conference Proceedings. OCEANS '95 MTS/IEEE.

[28]  Alfred O. Hero,et al.  Sparse Image Reconstruction for Partially known Blur Functions , 2006, 2006 International Conference on Image Processing.

[29]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[30]  Petre Stoica,et al.  MUSIC, maximum likelihood, and Cramer-Rao bound , 1989, IEEE Transactions on Acoustics, Speech, and Signal Processing.

[31]  Michael Elad,et al.  Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Harry L. Van Trees,et al.  Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory , 2002 .

[33]  S. Blunt,et al.  Adaptive pulse compression via MMSE estimation , 2006, IEEE Transactions on Aerospace and Electronic Systems.

[34]  R. Tibshirani,et al.  Regression shrinkage and selection via the lasso: a retrospective , 2011 .

[35]  J. Capon High-resolution frequency-wavenumber spectrum analysis , 1969 .

[36]  Andrea L. Kraay,et al.  A Physically Constrained Maximum-Likelihood Method for Snapshot-Deficient Adaptive Array Processing , 2007, IEEE Transactions on Signal Processing.

[37]  Bhaskar D. Rao,et al.  Sparse Bayesian learning for basis selection , 2004, IEEE Transactions on Signal Processing.

[38]  Alfred O. Hero,et al.  Sparse Image Reconstruction using Sparse Priors , 2006, 2006 International Conference on Image Processing.

[39]  Jean-Jacques Fuchs Linear programming in spectral estimation. Application to array processing , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.

[40]  Dimitri Peaucelle,et al.  SEDUMI INTERFACE 1.02: a tool for solving LMI problems with SEDUMI , 2002, Proceedings. IEEE International Symposium on Computer Aided Control System Design.

[41]  Jian Li,et al.  Transmit codes and receive filters for pulse compression radar systems , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[42]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[43]  J. Preisig,et al.  Estimation of Rapidly Time-Varying Sparse Channels , 2007, IEEE Journal of Oceanic Engineering.

[44]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[45]  Jian Li,et al.  An adaptive filtering approach to spectral estimation and SAR imaging , 1996, IEEE Trans. Signal Process..

[46]  James C Preisig,et al.  Performance analysis of adaptive equalization for coherent acoustic communications in the time-varying ocean environment. , 2005, The Journal of the Acoustical Society of America.

[47]  Jian Li,et al.  Signal Synthesis and Receiver Design for MIMO Radar Imaging , 2008, IEEE Transactions on Signal Processing.

[48]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[49]  Jian Li,et al.  On Sequences with Good Correlation Properties: A New Perspective , 2007, 2007 IEEE Information Theory Workshop on Information Theory for Wireless Networks.

[50]  B.D. Rao,et al.  The adaptive matching pursuit algorithm for estimation and equalization of sparse time-varying channels , 2000, Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154).

[51]  George Eastman House,et al.  Sparse Bayesian Learning and the Relevan e Ve tor Ma hine , 2001 .

[52]  Brian D. Jeffs Sparse inverse solution methods for signal and image processing applications , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[53]  Milica Stojanovic,et al.  Recent advances in high-speed underwater acoustic communications , 1996 .

[54]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[55]  Bhaskar D. Rao,et al.  Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm , 1997, IEEE Trans. Signal Process..

[56]  Mauricio D. Sacchi,et al.  Interpolation and extrapolation using a high-resolution discrete Fourier transform , 1998, IEEE Trans. Signal Process..

[57]  Jean-Jacques Fuchs,et al.  Recovery of exact sparse representations in the presence of bounded noise , 2005, IEEE Transactions on Information Theory.

[58]  A. B. Baggeroer,et al.  Sonar Arrays and Array Processing , 2005 .

[59]  Jian Li,et al.  Efficient mixed-spectrum estimation with applications to target feature extraction , 1995, Conference Record of The Twenty-Ninth Asilomar Conference on Signals, Systems and Computers.

[60]  B. Rao,et al.  Forward sequential algorithms for best basis selection , 1999 .

[61]  Henry Cox,et al.  Robust adaptive beamforming , 2005, IEEE Trans. Acoust. Speech Signal Process..

[62]  Jian Li,et al.  Extended derivations of MUSIC in the presence of steering vector errors , 2005, IEEE Transactions on Signal Processing.

[63]  Jian Li,et al.  On robust Capon beamforming and diagonal loading , 2003, IEEE Trans. Signal Process..

[64]  Bhaskar D. Rao,et al.  An Empirical Bayesian Strategy for Solving the Simultaneous Sparse Approximation Problem , 2007, IEEE Transactions on Signal Processing.

[65]  Johan Efberg,et al.  YALMIP : A toolbox for modeling and optimization in MATLAB , 2004 .

[66]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[67]  Lee Freitag,et al.  Channel-estimation-based adaptive equalization of underwater acoustic signals , 1999, Oceans '99. MTS/IEEE. Riding the Crest into the 21st Century. Conference and Exhibition. Conference Proceedings (IEEE Cat. No.99CH37008).

[68]  Michael Zibulevsky,et al.  Signal reconstruction in sensor arrays using sparse representations , 2006, Signal Process..

[69]  J.J. Fuchs,et al.  Convergence of a Sparse Representations Algorithm Applicable to Real or Complex Data , 2007, IEEE Journal of Selected Topics in Signal Processing.

[70]  Bhaskar D. Rao,et al.  Sparse solutions to linear inverse problems with multiple measurement vectors , 2005, IEEE Transactions on Signal Processing.

[71]  C. Nunn Constrained optimization applied to pulse compression codes and filters , 2005, IEEE International Radar Conference, 2005..

[72]  Balas K. Natarajan,et al.  Sparse Approximate Solutions to Linear Systems , 1995, SIAM J. Comput..

[73]  Jian Li,et al.  Mimo SAR Imaging: Signal Synthesis and Receiver Design , 2007, 2007 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing.

[74]  Jian Li,et al.  A new derivation of the APES filter , 1999, IEEE Signal Processing Letters.

[75]  Martin H. Ackroyd,et al.  Optimum Mismatched Filters for Sidelobe Suppression , 1973, IEEE Transactions on Aerospace and Electronic Systems.

[76]  Mário A. T. Figueiredo Adaptive Sparseness for Supervised Learning , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[77]  Joel A. Tropp,et al.  Just relax: convex programming methods for identifying sparse signals in noise , 2006, IEEE Transactions on Information Theory.

[78]  Urbashi Mitra,et al.  Sparse Channel Estimation with Zero Tap Detection , 2007, IEEE Transactions on Wireless Communications.

[79]  Weichang Li,et al.  Estimation and tracking of rapidly time-varying broadband acoustic communication channels , 2006 .