The law of the iterated logarithm for passive tracer in a two‐dimensional flow

In this note we prove the law of the iterated logarithm for trajectories of particle carried by a two dimensional Eulerian velocity field. The field is given by a solution of a stochastic Navier–Stokes system with a non-degenerate noise. The proof relies on the martingale approximation of the trajectory process.

[1]  Jonathan C. Mattingly,et al.  Malliavin calculus for the stochastic 2D Navier Stokes equation , 2004 .

[2]  P. Hartman Ordinary Differential Equations , 1965 .

[3]  P. Hall,et al.  Martingale Limit Theory and its Application. , 1984 .

[4]  P. Hall,et al.  Martingale Limit Theory and Its Application , 1980 .

[5]  Jerzy Zabczyk,et al.  Strong Feller Property and Irreducibility for Diffusions on Hilbert Spaces , 1995 .

[6]  Jonathan C. Mattingly,et al.  Spectral gaps in Wasserstein distances and the 2D stochastic Navier–Stokes equations , 2006, math/0602479.

[7]  L. E. Fraenkel,et al.  NAVIER-STOKES EQUATIONS (Chicago Lectures in Mathematics) , 1990 .

[8]  Jérôme Dedecker,et al.  On the functional central limit theorem for stationary processes , 2000 .

[9]  Armen Shirikyan,et al.  Mathematics of Two-Dimensional Turbulence , 2012 .

[10]  T. Kurtz,et al.  Stochastic equations in infinite dimensions , 2006 .

[11]  T. Komorowski,et al.  Passive tracer in a flow corresponding to two-dimensional stochastic Navier–Stokes equations , 2012, 1204.5900.

[12]  T. Szarek,et al.  An invariance principle for the law of the iterated logarithm for some Markov chains , 2012 .

[13]  Haim Brezis,et al.  A note on limiting cases of sobolev embeddings and convolution inequalities , 1980 .

[14]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[15]  Jose Luis Menaldi,et al.  Stochastic 2-D Navier—Stokes Equation , 2002 .

[16]  R. Temam Navier-Stokes Equations , 1977 .