From intermediate valence to magnetic behavior without long-range order by hydrogenation of the ternary gallide CeNiGa

We have studied both the crystal chemistry and magnetic, transport, and thermal properties of the hydride $\mathrm{Ce}\mathrm{Ni}\mathrm{Ga}{\mathrm{H}}_{1.1(1)}$. This compound crystallizes in the hexagonal $\mathrm{Al}{\mathrm{B}}_{2}$-type structure with a random distribution of nickel and gallium atoms on the B site, which has an important influence upon the macroscopic properties. Its thermoelectric power versus temperature indicates that cerium is in a trivalent state. The electrical resistivity displays two minima, which could be expected for the Kondo-type interactions in the presence of crystal field effects. Specific heat measurements up to $300\phantom{\rule{0.3em}{0ex}}\mathrm{K}$ allow us to determine the splitting energies ${\ensuremath{\Delta}}_{1}=100\phantom{\rule{0.3em}{0ex}}\mathrm{K}$ and ${\ensuremath{\Delta}}_{2}=159\phantom{\rule{0.3em}{0ex}}\mathrm{K}$. A broad maximum is observed around $4\phantom{\rule{0.3em}{0ex}}\mathrm{K}$ in the specific heat in the low temperature region. This maximum and its evolution with the applied magnetic field, are discussed in the framework of the existing theories, which point toward the existence of short-range magnetic correlations and spin glasslike freezing below $1.8\phantom{\rule{0.3em}{0ex}}\mathrm{K}$. This study reveals: (i) that the hydrogenation of the intermediate valence gallide CeNiGa induces a valence transition for cerium which is purely trivalent in the hydride and (ii) the absence above $1.8\phantom{\rule{0.3em}{0ex}}\mathrm{K}$ of long-range magnetic ordering resulting from structural disorder around Ce atoms.

[1]  J. Etourneau,et al.  Magnetic ordering induced by the hydrogenation of the ternary stannide CeNiSn , 2004 .

[2]  F. Weill,et al.  Ferromagnetic behavior of the new hydride CeNiSnH1.8(2) , 2003 .

[3]  M. Gingras,et al.  Pressure-induced crystallization of a spin liquid , 2002, Nature.

[4]  E. Gaudin,et al.  The ternary gallide CeNiGa: polymorphism and hydrogen absorption , 2002 .

[5]  C. Pfleiderer,et al.  Non-Fermi-liquid nature of the normal state of itinerant-electron ferromagnets , 2001, Nature.

[6]  T. Kuwai,et al.  Electric, magnetic, and thermal properties ofCe2NiGe3:A Kondo lattice compound showing spin glass behavior , 2001 .

[7]  T. Biwa,et al.  Metal-Insulator Transition in the Amorphous CexSi100-x (4≤ x≤ 83) Heavy Fermion System , 2001 .

[8]  T. Kuwai,et al.  Transport properties of Ce(NixPd1−x)2Si2 , 2001 .

[9]  F. Weill,et al.  Hydrogen absorption properties of CeNiAl: influence on its crystal structure and magnetic behaviour , 2001 .

[10]  E. Pugh,et al.  Superconductivity on the border of itinerant-electron ferromagnetism in UGe2 , 2000, Nature.

[11]  C. Tien,et al.  Ce2CuGe3: A nonmagnetic atom-disorder spin glass , 2000 .

[12]  B. Rainford,et al.  Intermediate valence to single ion Kondo behaviour in CePd3Bx alloys , 1996 .

[13]  Kenji Suzuki,et al.  Kondo behaviour in Ce-Si amorphous alloys , 1993 .

[14]  Kumar,et al.  Magnetic behavior of Ce1-xThxCu2Si2 for x >= 0.75. , 1991, Physical review. B, Condensed matter.

[15]  G. Hilscher,et al.  Specific heat measurements of Ce(Pb1−xSnx)3* , 1990 .

[16]  S. Dhar,et al.  False heavy fermions , 1990 .

[17]  Nieuwenhuys,et al.  Thermal expansion and specific heat of monocrystalline URu2Si2. , 1986, Physical review. B, Condensed matter.

[18]  S. Horn,et al.  Transport coefficients of intermediate valent Cenix intermetallic compounds , 1985 .

[19]  G. Villeneuve,et al.  Dispositif de mesures du pouvoir thermoélectrique sur des échantillons très résistants entre 4 et 300 K , 1980 .

[20]  S. Doniach The Kondo lattice and weak antiferromagnetism , 1977 .

[21]  B. Cornut,et al.  Influence of the Crystalline Field on the Kondo Effect of Alloys and Compounds with Cerium Impurities , 1972 .