Protecting Coherence and Entanglement by Quantum Feedback Controls

When a quantum system interacts with its environment, the so-called decoherence effect will normally destroy the coherence in the quantum state and the entanglement between its subsystems. We propose a feedback control strategy based on quantum weak measurements to protect coherence and entanglement of the quantum state against environmental disturbance. For a one-qubit quantum system under amplitude damping and dephasing decoherence channels, our strategy can preserve the coherence based on the measured information about the population difference between its two levels. For a two-qubit quantum system disentangled by independent amplitude damping and dephasing decoherence channels, the designed feedback control can preserve coherence between the ground state and the highest excited states by tuning the coupling strength between the two qubits, and at the same time minimize the loss of entanglement between the two qubits. As a consequence of dynamic symmetry, the generalization of these results derives the concept of control-induced decoherence-free observable subspace, for which several criteria are provided.

[1]  Hui Dong,et al.  Indirect control with a quantum accessor: Coherent control of multilevel system via a qubit chain , 2006 .

[2]  Wei Cui,et al.  Optimal decoherence control in non-Markovian open dissipative quantum systems , 2008, 0910.5208.

[3]  F. Nori,et al.  Superconducting Circuits and Quantum Information , 2005, quant-ph/0601121.

[4]  Karl Petersen Ergodic Theory , 1983 .

[5]  Sen Kuang,et al.  Lyapunov control methods of closed quantum systems , 2008, Autom..

[6]  Kurt Jacobs,et al.  A straightforward introduction to continuous quantum measurement , 2006, quant-ph/0611067.

[7]  D. D’Alessandro Introduction to Quantum Control and Dynamics , 2007 .

[8]  Stefano Mancini,et al.  Optimal control of entanglement via quantum feedback , 2007 .

[9]  R. Romano,et al.  Incoherent control and entanglement for two-dimensional coupled systems (8 pages) , 2006 .

[10]  Naoki Yamamoto,et al.  Quantum Risk-Sensitive Estimation and Robustness , 2007, IEEE Transactions on Automatic Control.

[11]  Daoyi Dong,et al.  Incoherent control of locally controllable quantum systems. , 2008, The Journal of chemical physics.

[12]  Jing Zhang,et al.  Using a squeezed field to protect two-atom entanglement against spontaneous emissions , 2008, 0807.0965.

[13]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[14]  Lorenza Viola,et al.  Quantum Markovian Subsystems: Invariance, Attractivity, and Control , 2007, IEEE Transactions on Automatic Control.

[15]  S. Lloyd,et al.  DYNAMICAL SUPPRESSION OF DECOHERENCE IN TWO-STATE QUANTUM SYSTEMS , 1998, quant-ph/9803057.

[16]  Austin P Lund,et al.  Feedback control of nonlinear quantum systems: a rule of thumb. , 2007, Physical review letters.

[17]  Tzyh-Jong Tarn,et al.  Smooth controllability of infinite-dimensional quantum-mechanical systems (11 pages) , 2006 .

[18]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[19]  A. Doherty,et al.  Robust quantum parameter estimation: Coherent magnetometry with feedback (16 pages) , 2003, quant-ph/0309101.

[20]  Jing Zhang,et al.  Asymptotically noise decoupling for Markovian open quantum systems , 2007 .

[21]  Holger F. Hofmann,et al.  Quantum control of atomic systems by homodyne detection and feedback , 1998 .

[22]  T. Tarn,et al.  On the controllability of quantum‐mechanical systems , 1983 .

[23]  Herschel Rabitz,et al.  Optimal control theory for continuous-variable quantum gates , 2007, 0708.2118.

[24]  Mazyar Mirrahimi,et al.  Controllability of quantum harmonic oscillators , 2004, IEEE Transactions on Automatic Control.

[25]  Re-Bing Wu,et al.  Control of state localization in a two-level quantum system , 2005 .

[26]  Franco Nori,et al.  Controllable coupling between flux qubits. , 2006, Physical review letters.

[27]  John W. Clark,et al.  Analytic controllability of time-dependent quantum control systems , 2004, quant-ph/0409147.

[28]  D. D'Alessandro,et al.  Optimal control of two-level quantum systems , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[29]  Gerard J. Milburn,et al.  Quantum nonlinear dynamics of continuously measured systems , 2001 .

[30]  Jing Zhang,et al.  Maximal suppression of decoherence in Markovian quantum systems , 2005 .

[31]  J. J. Hope,et al.  Stabilizing entanglement by quantum-jump-based feedback , 2007 .

[32]  Andrew J. Landahl,et al.  Continuous quantum error correction via quantum feedback control , 2002 .

[33]  Y. Makhlin,et al.  Quantum-state engineering with Josephson-junction devices , 2000, cond-mat/0011269.

[34]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[35]  Stefano Mancini,et al.  Bayesian feedback versus Markovian feedback in a two-level atom , 2002 .

[36]  G. Kurizki,et al.  Unified theory of dynamically suppressed qubit decoherence in thermal baths. , 2004, Physical review letters.

[37]  M. R. James,et al.  Risk-sensitive optimal control of quantum systems , 2004 .

[38]  Daniel A. Lidar,et al.  Stabilizing qubit coherence via tracking-control , 2005, Quantum Inf. Comput..

[39]  Gershon Kurizki,et al.  Universal dynamical control of local decoherence for multipartite and multilevel systems , 2006 .

[40]  Zairong Xi,et al.  Combating dephasing decoherence by periodically performing tracking control and projective measurement , 2007 .

[41]  K. Jacobs,et al.  FEEDBACK CONTROL OF QUANTUM SYSTEMS USING CONTINUOUS STATE ESTIMATION , 1999 .

[42]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[43]  Stefano Mancini,et al.  Towards feedback control of entanglement , 2005 .

[44]  Vaidman,et al.  How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. , 1988, Physical review letters.

[45]  Claudio Altafini Feedback Control of Spin Systems , 2007, Quantum Inf. Process..

[46]  Wei Cui,et al.  The entanglement dynamics of the bipartite quantum system: toward entanglement sudden death , 2009, 0910.5210.

[47]  Tzyh Jong Tarn,et al.  Decoherence control in open quantum systems via classical feedback , 2007 .

[48]  Andrei Sobolev,et al.  Continuous measurement of canonical observables and limit Stochastic Schrodinger equations , 2004 .

[49]  Lloyd,et al.  Almost any quantum logic gate is universal. , 1995, Physical review letters.

[50]  J. F. Ralph,et al.  Weak measurement and control of entanglement generation , 2007, 0709.4217.

[51]  Domenico D'Alessandro,et al.  Environment-mediated control of a quantum system. , 2006, Physical review letters.

[52]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.

[53]  D. Newton,et al.  ERGODIC THEORY (Cambridge Studies in Advanced Mathematics, 2) , 1984 .

[54]  M.R. James,et al.  $H^{\infty}$ Control of Linear Quantum Stochastic Systems , 2008, IEEE Transactions on Automatic Control.

[55]  Guang-Can Guo,et al.  Preserving Coherence in Quantum Computation by Pairing Quantum Bits , 1997 .

[56]  Matthew R. James,et al.  An Introduction to Quantum Filtering , 2006, SIAM Journal of Control and Optimization.

[57]  H. M. Wiseman,et al.  Feedback-stabilization of an arbitrary pure state of a two-level atom , 2001 .

[58]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[59]  Claudio Altafini,et al.  Coherent control of open quantum dynamical systems , 2004 .

[60]  C. Altafini,et al.  QUANTUM MECHANICS (GENERAL AND NONRELATIVISTIC) 2357 Controllability properties for finite dimensional quantum Markovian master equations , 2002, quant-ph/0211194.

[61]  R Laflamme,et al.  Experimental Realization of Noiseless Subsystems for Quantum Information Processing , 2001, Science.

[62]  A. Doherty,et al.  Cavity Quantum Electrodynamics: Coherence in Context , 2002, Science.

[63]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[64]  Robert L. Cook,et al.  Optical coherent state discrimination using a closed-loop quantum measurement , 2007, Nature.

[65]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[66]  R. Brockett,et al.  Time optimal control in spin systems , 2000, quant-ph/0006114.

[67]  Ramon van Handel,et al.  Feedback control of quantum state reduction , 2005, IEEE Transactions on Automatic Control.

[68]  R. Puri,et al.  Mathematical Methods of Quantum Optics , 2001 .

[69]  Mazyar Mirrahimi,et al.  Stabilizing Feedback Controls for Quantum Systems , 2005, SIAM J. Control. Optim..

[70]  Franco Nori,et al.  Cooling and squeezing the fluctuations of a nanomechanical beam by indirect quantum feedback control , 2009, 0902.2526.

[71]  Alexandre Blais,et al.  Quantum trajectory approach to circuit QED: Quantum jumps and the Zeno effect , 2007, 0709.4264.

[72]  J. I. Cirac,et al.  Enforcing Coherent Evolution in Dissipative Quantum Dynamics , 1996, Science.

[73]  J. Gough,et al.  Construction of bilinear control Hamiltonians using the series product and quantum feedback , 2008, 0807.4225.

[74]  Ian R. Petersen,et al.  Control of Linear Quantum Stochastic Systems , 2007 .

[75]  Domenico D'Alessandro,et al.  Notions of controllability for bilinear multilevel quantum systems , 2003, IEEE Trans. Autom. Control..

[76]  Domenico D'Alessandro,et al.  Incoherent control and entanglement for two-dimensional coupled systems , 2005, SPIE Defense + Commercial Sensing.

[77]  Shinji Hara,et al.  Feedback control of quantum entanglement in a two-spin system , 2005, CDC 2005.

[78]  Navin Khaneja,et al.  Sub-Riemannian geometry and time optimal control of three spin systems: Quantum gates and coherence transfer , 2002 .

[79]  N. Yamamoto Robust observer for uncertain linear quantum systems , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[80]  A. I. Solomon,et al.  Complete controllability of quantum systems , 2000, quant-ph/0010031.

[81]  R. Handel,et al.  Deterministic Dicke-state preparation with continuous measurement and control , 2004, quant-ph/0402137.

[82]  Wiseman,et al.  Quantum theory of continuous feedback. , 1994, Physical review. A, Atomic, molecular, and optical physics.