Stepsize selection for tolerance proportionality in explicit Runge–Kutta codes
暂无分享,去创建一个
Desmond J. Higham | Manuel Calvo | Juan I. Montijano | Luis Rández | D. Higham | J. I. Montijano | M. Calvo | L. Rández
[1] L. F. Shampire. Quadrature and Runge-Kutta formulas , 1976 .
[2] Desmond J. Higham,et al. Global error versus tolerance for explicit Runge-Kutta methods , 1991 .
[3] Lawrence F. Shampine. Tolerance proportionality in ODE codes , 1989 .
[4] W. H. Enright,et al. The relative efficiency of alternative defect control schemes for high-order continuous Runge-Kutta formulas , 1993 .
[5] F. Krogh,et al. Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.
[6] J. Verner. Explicit Runge–Kutta Methods with Estimates of the Local Truncation Error , 1978 .
[7] Lawrence F. Shampine,et al. Automatic selection of the initial step size for an ODE solver , 1987 .
[8] Ernst Hairer,et al. Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .
[9] J. Dormand,et al. A family of embedded Runge-Kutta formulae , 1980 .
[10] Lawrence F. Shampine. The step sizes used by one-step codes for ODEs☆ , 1985 .
[11] E. Fehlberg. Classical Fifth-, Sixth-, Seventh-, and Eighth-Order Runge-Kutta Formulas with Stepsize Control , 1968 .
[12] John D. Pryce,et al. Two FORTRAN packages for assessing initial value methods , 1987, TOMS.
[13] Desmond J. Higham,et al. Does Error Control Suppress Spuriosity , 1997 .
[14] Hans J. Stetter. Considerations concerning a theory for ode-solvers , 1978 .
[15] Desmond J. Higham,et al. The tolerance proportionality of adaptive ODE solvers , 1993 .