Multimodal and intuitionistic logics in simple type theory

We study straightforward embeddings of propositional normal multimodal logic and propositional intuitionistic logic in simple type theory. The correctness of these embeddings is easily shown. We give examples to demonstrate that these embeddings provide an effective framework for computational investigations of various non-classical logics. We report some experiments using the higher-order automated theorem prover LEO-II.

[1]  Geoff Sutcliffe,et al.  Progress in the Development of Automated Theorem Proving for Higher-Order Logic , 2009, CADE.

[2]  Laura Giordano,et al.  A Framework for a Modal Logic Programming , 1996, JICSLP.

[3]  Peter B. Andrews General models and extensionality , 1972, Journal of Symbolic Logic.

[4]  Daniel Gallin,et al.  Intensional and Higher-Order Modal Logic , 1975 .

[5]  Luis Fariñas del Cerro MOLOG: A system that extends PROLOG with modal logic , 1986 .

[6]  Jeroen Groenendijk,et al.  Logic, language and meaning: Vol. II: Intensional logic and logical grammar , 1991 .

[7]  Luis Fariñas del Cerro,et al.  Declarative Semantics for Modal Logic Programs , 1988, FGCS.

[8]  L. T. F. Gamut Logic, language, and meaning , 1991 .

[9]  Lawrence C. Paulson,et al.  Exploring Properties of Normal Multimodal Logics in Simple Type Theory with LEO-II , 2008 .

[10]  Christoph Benzmüller Automating Access Control Logics in Simple Type Theory with LEO-II (Techreport) , 2009, SEC.

[11]  Gert Smolka,et al.  Terminating Tableaux for Hybrid Logic with the Difference Modality and Converse , 2008, IJCAR.

[12]  Gert Smolka,et al.  Higher-Order Syntax and Saturation Algorithms for Hybrid Logic , 2007, Electron. Notes Theor. Comput. Sci..

[13]  Peter B. Andrews General Models, Descriptions, and Choice in Type Theory , 1972, J. Symb. Log..

[14]  Alan Bundy,et al.  Constructing Induction Rules for Deductive Synthesis Proofs , 2006, CLASE.

[15]  Alonzo Church,et al.  A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.

[16]  Peter B. Andrews On connections and higher-order logic , 2004, Journal of Automated Reasoning.

[17]  Andreas Nonnengart How to Use Modalities and Sorts in Prolog , 1994, JELIA.

[18]  Alfred Tarski,et al.  Some theorems about the sentential calculi of Lewis and Heyting , 1948, The Journal of Symbolic Logic.

[19]  Leon Henkin,et al.  Completeness in the theory of types , 1950, Journal of Symbolic Logic.

[20]  Christoph Benzmüller,et al.  Higher-order semantics and extensionality , 2004, Journal of Symbolic Logic.

[21]  Hans Jürgen Ohlbach,et al.  A Resolution Calculus for Modal Logics , 1988, CADE.

[22]  Larry Wos,et al.  What Is Automated Reasoning? , 1987, J. Autom. Reason..

[23]  Frank Pfenning,et al.  TPS: A theorem-proving system for classical type theory , 1996, Journal of Automated Reasoning.

[24]  Linh Anh Nguyen A Fixpoint Semantics and an SLD-Resolution Calculus for Modal Logic Programs , 2003, Fundam. Informaticae.

[25]  Peter B. Andrews An introduction to mathematical logic and type theory - to truth through proof , 1986, Computer science and applied mathematics.

[26]  B. Carpenter,et al.  Type-Logical Semantics , 1997 .

[27]  Peter B. Andrews,et al.  TPS: A hybrid automatic-interactive system for developing proofs , 2006, J. Appl. Log..

[28]  C. Pollard,et al.  Center for the Study of Language and Information , 2022 .

[29]  Alessandro Armando Automated Reasoning, 4th International Joint Conference, IJCAR 2008, Sydney, Australia, August 12-15, 2008, Proceedings , 2008, IJCAR.

[30]  Christoph Benzmüller,et al.  Church’s Type Theory , 2006 .

[31]  Stephan Schulz,et al.  E - a brainiac theorem prover , 2002, AI Commun..