Early Diverging Insect-Pathogenic Fungi of the Order Entomophthorales Possess Diverse and Unique Subtilisin-Like Serine Proteases

Insect-pathogenic fungi use subtilisin-like serine proteases (SLSPs) to degrade chitin-associated proteins in the insect procuticle. Most insect-pathogenic fungi in the order Hypocreales (Ascomycota) are generalist species with a broad host-range, and most species possess a high number of SLSPs. The other major clade of insect-pathogenic fungi is part of the subphylum Entomophthoromycotina (Zoopagomycota, formerly Zygomycota) which consists of high host-specificity insect-pathogenic fungi that naturally only infect a single or very few host species. The extent to which insect-pathogenic fungi in the order Entomophthorales rely on SLSPs is unknown. Here we take advantage of recently available transcriptomic and genomic datasets from four genera within Entomophthoromycotina: the saprobic or opportunistic pathogens Basidiobolus meristosporus, Conidiobolus coronatus, C. thromboides, C. incongruus, and the host-specific insect pathogens Entomophthora muscae and Pandora formicae, specific pathogens of house flies (Muscae domestica) and wood ants (Formica polyctena), respectively. In total 154 SLSP from six fungi in the subphylum Entomophthoromycotina were identified: E. muscae (n = 22), P. formicae (n = 6), B. meristosporus (n = 60), C. thromboides (n = 18), C. coronatus (n = 36), and C. incongruus (n = 12). A unique group of 11 SLSPs was discovered in the genomes of the obligate biotrophic fungi E. muscae, P. formicae and the saprobic human pathogen C. incongruus that loosely resembles bacillopeptidase F-like SLSPs. Phylogenetics and protein domain analysis show this class represents a unique group of SLSPs so far only observed among Bacteria, Oomycetes and early diverging fungi such as Cryptomycota, Microsporidia, and Entomophthoromycotina. This group of SLSPs is missing in the sister fungal lineages of Kickxellomycotina and the fungal phyla Mucoromyocta, Ascomycota and Basidiomycota fungi suggesting interesting gene loss patterns.

[1]  Marta M. Stepniewska-Dziubinska,et al.  Fungal lifestyle reflected in serine protease repertoire , 2017, Scientific Reports.

[2]  Robert J. Schmitz,et al.  Widespread adenine N6-methylation of active genes in fungi , 2017, Nature Genetics.

[3]  Thomas K. F. Wong,et al.  ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates , 2017, Nature Methods.

[4]  A. B. Jensen,et al.  Comparative transcriptomics reveal host‐specific nucleotide variation in entomophthoralean fungi , 2017, Molecular ecology.

[5]  Jinkui Yang,et al.  Phylogenomic evolutionary surveys of subtilase superfamily genes in fungi , 2017, Scientific Reports.

[6]  A. Pollard,et al.  Limb proportions show developmental plasticity in response to embryo movement , 2017, Scientific Reports.

[7]  J. Stajich,et al.  A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data , 2016, Mycologia.

[8]  C. Fraser,et al.  An integrated genomic and transcriptomic survey of mucormycosis-causing fungi , 2016, Nature Communications.

[9]  Robert D. Finn,et al.  The Pfam protein families database: towards a more sustainable future , 2015, Nucleic Acids Res..

[10]  John W. Taylor,et al.  Comparative Phylogenomics of Pathogenic and Nonpathogenic Species , 2015, G3: Genes, Genomes, Genetics.

[11]  Neil D. Rawlings,et al.  Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors , 2015, Nucleic Acids Res..

[12]  A. B. Jensen,et al.  Transcriptome of an entomophthoralean fungus (Pandora formicae) shows molecular machinery adjusted for successful host exploitation and transmission. , 2015, Journal of invertebrate pathology.

[13]  A. Salamov,et al.  Phylogenomic Analyses Indicate that Early Fungi Evolved Digesting Cell Walls of Algal Ancestors of Land Plants , 2015, Genome biology and evolution.

[14]  Chengshu Wang,et al.  Trajectory and genomic determinants of fungal-pathogen speciation and host adaptation , 2014, Proceedings of the National Academy of Sciences.

[15]  Marco Biasini,et al.  SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information , 2014, Nucleic Acids Res..

[16]  A. Muszewska,et al.  Whole genome sequencing and the Zygomycota. , 2014 .

[17]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[18]  A. B. Jensen,et al.  Evolutionary interaction networks of insect pathogenic fungi. , 2014, Annual review of entomology.

[19]  D. Ahrén,et al.  Genomic Mechanisms Accounting for the Adaptation to Parasitism in Nematode-Trapping Fungi , 2013, PLoS genetics.

[20]  Christina A. Cuomo,et al.  Comparative Genome Analysis of Trichophyton rubrum and Related Dermatophytes Reveals Candidate Genes Involved in Infection , 2012, mBio.

[21]  Guo-Ping Zhao,et al.  Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana , 2012, Scientific Reports.

[22]  Shane S. Sturrock,et al.  Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data , 2012, Bioinform..

[23]  M. Grynberg,et al.  Independent subtilases expansions in fungi associated with animals. , 2011, Molecular biology and evolution.

[24]  S. Brunak,et al.  SignalP 4.0: discriminating signal peptides from transmembrane regions , 2011, Nature Methods.

[25]  Christina A. Cuomo,et al.  Comparative Genomic Analysis of Human Fungal Pathogens Causing Paracoccidioidomycosis , 2011, PLoS genetics.

[26]  T. C. White,et al.  Comparative and functional genomics provide insights into the pathogenicity of dermatophytic fungi , 2011, Genome Biology.

[27]  Tal Pupko,et al.  GUIDANCE: a web server for assessing alignment confidence scores , 2010, Nucleic Acids Res..

[28]  Tamás Nepusz,et al.  SCPS: a fast implementation of a spectral method for detecting protein families on a genome-wide scale , 2010, BMC Bioinformatics.

[29]  Jason E Stajich,et al.  Comparative genomic analyses of the human fungal pathogens Coccidioides and their relatives. , 2009, Genome research.

[30]  Dirk Husmeier,et al.  TOPALi v2: a rich graphical interface for evolutionary analyses of multiple alignments on HPC clusters and multi-core desktops , 2008, Bioinform..

[31]  Rodrigo Lopez,et al.  Clustal W and Clustal X version 2.0 , 2007, Bioinform..

[32]  Ziheng Yang PAML 4: phylogenetic analysis by maximum likelihood. , 2007, Molecular biology and evolution.

[33]  R. S. St. Leger,et al.  Reconstructing the diversification of subtilisins in the pathogenic fungus Metarhizium anisopliae. , 2004, Gene.

[34]  O. Gascuel,et al.  A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. , 2003, Systematic biology.

[35]  Anton J. Enright,et al.  An efficient algorithm for large-scale detection of protein families. , 2002, Nucleic acids research.

[36]  Viktor K. Prasanna,et al.  An efficient algorithm for large-scale matrix transposition , 2000, Proceedings 2000 International Conference on Parallel Processing.

[37]  J. Visser,et al.  Characterization of the Kexin-Like Maturase ofAspergillus niger , 2000, Applied and Environmental Microbiology.

[38]  R. Leger,et al.  Cuticle-degrading enzymes of entomopathogenic fungi: Synthesis in culture on cuticle , 1986 .

[39]  R. Leger,et al.  Cuticle-degrading enzymes of entomopathogenic fungi: cuticle degradation in vitro by enzymes from entomopathogens , 1986 .

[40]  A. B. Jensen,et al.  Utilizing Genomics to Study Entomopathogenicity in the Fungal Phylum Entomophthoromycota: A Review of Current Genetic Resources. , 2016, Advances in genetics.

[41]  M. Blackwell,et al.  Chapter 6 – Fungal Entomopathogens , 2012 .

[42]  A. Charnley Fungal pathogens of insects: Cuticle degrading enzymes and toxins , 2003 .

[43]  Sean R. Eddy,et al.  Profile hidden Markov models , 1998, Bioinform..