Finite Alphabet Iterative Decoders—Part I: Decoding Beyond Belief Propagation on the Binary Symmetric Channel

We introduce a new paradigm for finite precision iterative decoding on low-density parity-check codes over the binary symmetric channel. The messages take values from a finite alphabet, and unlike traditional quantized decoders which are quantized versions of the belief propagation (BP) decoder, the proposed finite alphabet iterative decoders (FAIDs) do not propagate quantized probabilities or log-likelihoods and the variable node update functions do not mimic the BP decoder. Rather, the update functions are maps designed using the knowledge of potentially harmful subgraphs that could be present in a given code, thereby rendering these decoders capable of outperforming the BP in the error floor region. On certain column-weight-three codes of practical interest, we show that there exist {FAIDs that surpass the floating-point BP decoder in the error floor region while requiring only three bits of precision for the representation of the messages}. Hence, FAIDs are able to achieve a superior performance at much lower complexity. We also provide a methodology for the selection of FAIDs that is not code-specific, but gives a set of candidate FAIDs containing potentially good decoders in the error floor region for any column-weight-three code. We validate the code generality of our methodology by providing particularly good three-bit precision FAIDs for a variety of codes with different rates and lengths.

[1]  Aleksandar Kavcic,et al.  Augmented Belief-Propagation Decoding of Low-Density Parity-Check Codes , 2006, IEEE Transactions on Communications.

[2]  B. Vasic,et al.  Trapping set ontology , 2009, 2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[3]  Greg Kuperberg Symmetries of Plane Partitions and the Permanent - Determinant Method , 1994, J. Comb. Theory, Ser. A.

[4]  Paul H. Siegel,et al.  Numerical issues affecting LDPC error floors , 2012, 2012 IEEE Global Communications Conference (GLOBECOM).

[5]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[6]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[7]  Lara Dolecek,et al.  Lowering LDPC Error Floors by Postprocessing , 2008, IEEE GLOBECOM 2008 - 2008 IEEE Global Telecommunications Conference.

[8]  David Declercq,et al.  Finite alphabet iterative decoding (FAID) of the (155,64,20) Tanner code , 2010, 2010 6th International Symposium on Turbo Codes & Iterative Information Processing.

[9]  Stark C. Draper,et al.  Multi-stage decoding of LDPC codes , 2009, 2009 IEEE International Symposium on Information Theory.

[10]  Ajay Dholakia,et al.  Reduced-complexity decoding of LDPC codes , 2005, IEEE Transactions on Communications.

[11]  David Declercq,et al.  Finite alphabet iterative decoders for LDPC codes surpassing floating-point iterative decoders , 2011 .

[12]  Amir H. Banihashemi,et al.  On implementation of min-sum algorithm and its modifications for decoding low-density Parity-check (LDPC) codes , 2005, IEEE Transactions on Communications.

[13]  Paul H. Siegel,et al.  Error Floor Approximation for LDPC Codes in the AWGN Channel , 2014, IEEE Trans. Inf. Theory.

[14]  Jeremy Thorpe,et al.  Memory-efficient decoding of LDPC codes , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[15]  O. Milenkovic,et al.  Algorithmic and combinatorial analysis of trapping sets in structured LDPC codes , 2005, 2005 International Conference on Wireless Networks, Communications and Mobile Computing.

[16]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[17]  Lara Dolecek,et al.  Predicting error floors of structured LDPC codes: deterministic bounds and estimates , 2009, IEEE Journal on Selected Areas in Communications.

[18]  Thomas J. Richardson,et al.  Error Floors of LDPC Codes , 2003 .

[19]  Qiuju Diao,et al.  A transform approach for constructing quasi-cyclic Euclidean geometry LDPC codes , 2012, 2012 Information Theory and Applications Workshop.

[20]  Shashi Kiran Chilappagari,et al.  Error Floors of LDPC Codes on the Binary Symmetric Channel , 2006, 2006 IEEE International Conference on Communications.

[21]  Brian M. Kurkoski,et al.  Quantization of Binary-Input Discrete Memoryless Channels, with Applications to LDPC Decoding , 2011, ArXiv.

[22]  Shashi Kiran Chilappagari,et al.  Eliminating trapping sets in low-density parity-check codes by using Tanner graph covers , 2008, IEEE Transactions on Information Theory.

[23]  David Declercq,et al.  Iterative decoding beyond belief propagation , 2010, 2010 Information Theory and Applications Workshop (ITA).

[24]  R. M. Tanner,et al.  A Class of Group-Structured LDPC Codes , 2001 .

[25]  Shashi Kiran Chilappagari,et al.  Error-Correction Capability of Column-Weight-Three LDPC Codes , 2007, IEEE Transactions on Information Theory.

[26]  David Declercq,et al.  On the selection of finite alphabet iterative decoders for LDPC codes on the BSC , 2011, 2011 IEEE Information Theory Workshop.

[27]  Lara Dolecek,et al.  Design of LDPC decoders for improved low error rate performance: quantization and algorithm choices , 2009, IEEE Transactions on Communications.

[28]  William E. Ryan,et al.  Low-floor decoders for LDPC codes , 2009, IEEE Transactions on Communications.

[29]  Richard D. Wesel,et al.  LDPC Decoders with Informed Dynamic Scheduling , 2010, IEEE Transactions on Communications.

[30]  Paul H. Siegel,et al.  Quantized min-sum decoders with low error floor for LDPC codes , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[31]  Shashi Kiran Chilappagari,et al.  On the Construction of Structured LDPC Codes Free of Small Trapping Sets , 2012, IEEE Transactions on Information Theory.

[32]  Xiaojie Zhang,et al.  Will the real error floor please stand up? , 2012, 2012 International Conference on Signal Processing and Communications (SPCOM).

[33]  Evangelos Eleftheriou,et al.  Regular and irregular progressive edge-growth tanner graphs , 2005, IEEE Transactions on Information Theory.

[34]  David Declercq,et al.  Multilevel decoders surpassing belief propagation on the binary symmetric channel , 2010, 2010 IEEE International Symposium on Information Theory.

[35]  Shashi Kiran Chilappagari,et al.  Instanton-based techniques for analysis and reduction of error floors of LDPC codes , 2009, IEEE Journal on Selected Areas in Communications.

[36]  Hideki Imai,et al.  Reduced complexity iterative decoding of low-density parity check codes based on belief propagation , 1999, IEEE Trans. Commun..

[37]  William T. Freeman,et al.  Constructing free-energy approximations and generalized belief propagation algorithms , 2005, IEEE Transactions on Information Theory.