Improving the coherence properties of solid-state spin ensembles via optimized dynamical decoupling

In this work, we optimize a dynamical decoupling (DD) protocol to improve the spin coherence properties of a dense ensemble of nitrogen-vacancy (NV) centers in diamond. Using liquid nitrogen-based cooling and DD microwave pulses, we increase the transverse coherence time T2 from ∼ 0.7 ms up to ∼ 30 ms. We extend previous work of single-axis (Carr-Purcell-Meiboom-Gill) DD towards the preservation of arbitrary spin states. After performing a detailed analysis of pulse and detuning errors, we compare the performance of various DD protocols. We identify that the concatenated XY8 pulse sequences serves as the optimal control scheme for preserving an arbitrary spin state. Finally, we use the concatenated sequences to demonstrate an immediate improvement of the AC magnetic sensitivity up to a factor of two at 250 kHz. For future work, similar protocols may be used to increase coherence times up to NV-NV interaction time scales, a major step toward the creation of quantum collective NV spin states.

[1]  Peter Mansfield,et al.  Symmetrized pulse sequences in high resolution NMR in solids , 1971 .

[2]  Raymond G. Beausoleil,et al.  Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications , 2009 .

[3]  Viatcheslav V. Dobrovitski,et al.  Supporting Information for “ Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond ” , 2013 .

[4]  Lukin,et al.  Magnetic field imaging with nitrogen-vacancy ensembles , 2011, 1207.3339.

[5]  T. Gullion,et al.  New, compensated Carr-Purcell sequences , 1990 .

[6]  S. Das Sarma,et al.  Concatenated dynamical decoupling in a solid-state spin bath , 2007, 0707.1037.

[7]  C. Rettner,et al.  Multipulse double-quantum magnetometry with near-surface nitrogen-vacancy centers. , 2014, Physical review letters.

[8]  M. Lukin,et al.  Enhanced solid-state multispin metrology using dynamical decoupling , 2012, 1201.5686.

[9]  M. Markham,et al.  Ultralong spin coherence time in isotopically engineered diamond. , 2009, Nature materials.

[10]  M. Lukin,et al.  Quantum control of proximal spins using nanoscale magnetic resonance imaging , 2011, 1103.0546.

[11]  A. V. Tsukanov Quantum memory based on ensemble states of NV centers in diamond , 2013 .

[12]  M. Plenio,et al.  Robust dynamical decoupling with concatenated continuous driving , 2011, 1111.0930.

[13]  P. Zoller,et al.  Phonon-induced spin-spin interactions in diamond nanostructures: application to spin squeezing. , 2013, Physical review letters.

[14]  N. Yao,et al.  Collectively enhanced interactions in solid-state spin qubits. , 2012, Physical review letters.

[15]  S. Meiboom,et al.  Modified Spin‐Echo Method for Measuring Nuclear Relaxation Times , 1958 .

[16]  Alfred Leitenstorfer,et al.  Nanoscale imaging magnetometry with diamond spins under ambient conditions , 2008, Nature.

[17]  Paola Cappellaro,et al.  Continuous dynamical decoupling magnetometry , 2012 .

[18]  M. Fanciulli Electron Spin Resonance and Related Phenomena in Low-Dimensional Structures , 2009 .

[19]  D. Cory,et al.  Robust decoupling techniques to extend quantum coherence in diamond. , 2010, Physical review letters.

[20]  Optical polarization of nuclear ensembles in diamond , 2012, 1202.1072.

[21]  R Hanson,et al.  Universal Dynamical Decoupling of a Single Solid-State Spin from a Spin Bath , 2010, Science.

[22]  Jacob M. Taylor,et al.  Nanoscale magnetic sensing with an individual electronic spin in diamond , 2008, Nature.

[23]  R. Hanson,et al.  Single-spin magnetometry with multipulse sensing sequences. , 2010, Physical review letters.

[24]  Dieter Suter,et al.  Robust dynamical decoupling for quantum computing and quantum memory. , 2011, Physical review letters.

[25]  Jacob M. Taylor,et al.  High-sensitivity diamond magnetometer with nanoscale resolution , 2008, 0805.1367.

[26]  Electron spin as a spectrometer of nuclear spin noise and other fluctuations , 2006, cond-mat/0610716.

[27]  Fedor Jelezko,et al.  Dynamical Decoupling of a single electron spin at room temperature , 2010, 1008.1953.

[28]  D. Budker,et al.  Broadband magnetometry by infrared-absorption detection of nitrogen-vacancy ensembles in diamond , 2010, 1009.4747.

[29]  D Budker,et al.  Solid-state electronic spin coherence time approaching one second , 2012, Nature Communications.

[30]  M. Markham,et al.  Heralded entanglement between solid-state qubits separated by three metres , 2012, Nature.

[31]  R. Hanson,et al.  Comparison of dynamical decoupling protocols for a nitrogen-vacancy center in diamond , 2012, 1202.0462.

[32]  D Budker,et al.  Temperature- and magnetic-field-dependent longitudinal spin relaxation in nitrogen-vacancy ensembles in diamond. , 2011, Physical review letters.

[33]  D. Lidar,et al.  Fault-tolerant quantum dynamical decoupling , 2004, 2005 Quantum Electronics and Laser Science Conference.

[34]  L. Hollenberg,et al.  Electric-field sensing using single diamond spins , 2011 .

[35]  P Cappellaro,et al.  Suppression of spin-bath dynamics for improved coherence of multi-spin-qubit systems , 2012, Nature Communications.

[36]  S. A. Lyon,et al.  Effect of pulse error accumulation on dynamical decoupling of the electron spins of phosphorus donors in silicon , 2010, 1011.6417.

[37]  Paola Cappellaro,et al.  Quantum correlation in disordered spin systems: Applications to magnetic sensing , 2009, 0904.2642.