Influence of SENSE on image properties in high‐resolution single‐shot echo‐planar DTI

Limited spatial resolution is a key obstacle to the study of brain white matter structure with diffusion tensor imaging (DTI). In its frequent implementation with single‐excitation spin‐echo echo‐planar sequences, DTI's ability to resolve small structures is strongly restricted by T2 and T  2* decay, B0 inhomogeneity, and limited signal‐to‐noise ratio (SNR). In this work the influence of sensitivity encoding (SENSE) on diffusion‐weighted (DW) image properties is investigated. Computer simulations showed that the PSF becomes narrower with increasing SENSE reduction factors, R, enhancing the intrinsic resolution. After a brief theoretical discussion, we describe the estimation of SNR on a pixel‐by‐pixel basis as a function of R. The mean image SNR behavior is manifold: SENSE is capable of increasing SNR efficiency by reducing the echo time (TE). Each SNR(R) curve reveals a maximum that depends on the amount of partial Fourier encoding used. The overall best SNR efficiency for an eight‐element head coil array and a b‐factor of 1000 s/mm2 is achieved at R = 2.1 and partial Fourier encoding of 60%. In vivo tensor maps of volunteers and a patient, with an in‐plane resolution of 0.78 × 0.78 mm2, are also presented to demonstrate the practical implementation of the parallel approach. Magn Reson Med, 2006. © 2006 Wiley‐Liss, Inc.

[1]  Derek K Jones,et al.  Applications of diffusion‐weighted and diffusion tensor MRI to white matter diseases – a review , 2002, NMR in biomedicine.

[2]  Carl-Fredrik Westin,et al.  High-resolution line scan diffusion tensor MR imaging of white matter fiber tract anatomy. , 2002, AJNR. American journal of neuroradiology.

[3]  P. Basser,et al.  Water Diffusion Changes in Wallerian Degeneration and Their Dependence on White Matter Architecture , 2000 .

[4]  Thomas Netsch,et al.  Quantitative evaluation of image-based distortion correction in diffusion tensor imaging , 2004, IEEE Transactions on Medical Imaging.

[5]  P. Boesiger,et al.  SENSE‐DTI at 3 T , 2004, Magnetic resonance in medicine.

[6]  Derek K. Jones,et al.  The future for diffusion tensor imaging in neuropsychiatry. , 2002, The Journal of neuropsychiatry and clinical neurosciences.

[7]  S. Wakana,et al.  Fiber tract-based atlas of human white matter anatomy. , 2004, Radiology.

[8]  R. Edelman,et al.  Resolution enhancement in single‐shot imaging using simultaneous acquisition of spatial harmonics (SMASH) , 1999, Magnetic resonance in medicine.

[9]  Sinisa Pajevic,et al.  Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: Application to white matter fiber tract mapping in the human brain , 1999, Magnetic resonance in medicine.

[10]  Hangyi Jiang,et al.  High‐resolution isotropic 3D diffusion tensor imaging of the human brain , 2002, Magnetic resonance in medicine.

[11]  James G Pipe,et al.  Multishot diffusion‐weighted FSE using PROPELLER MRI , 2002, Magnetic resonance in medicine.

[12]  T E Conturo,et al.  Differences between gray matter and white matter water diffusion in stroke: diffusion-tensor MR imaging in 12 patients. , 2000, Radiology.

[13]  Roland Bammer,et al.  Diffusion tensor imaging using single‐shot SENSE‐EPI , 2002, Magnetic resonance in medicine.

[14]  P. Boesiger,et al.  Advances in sensitivity encoding with arbitrary k‐space trajectories , 2001, Magnetic resonance in medicine.

[15]  P. Hüppi,et al.  Diffusion tensor imaging of normal and injured developing human brain ‐ a technical review , 2002, NMR in biomedicine.

[16]  Robert Turner,et al.  3D DT‐MRI using a reduced‐FOV approach and saturation pulses , 2004, Magnetic resonance in medicine.

[17]  S. Holland,et al.  NMR relaxation times in the human brain at 3.0 tesla , 1999, Journal of magnetic resonance imaging : JMRI.

[18]  Derek K. Jones,et al.  Isotropic resolution diffusion tensor imaging with whole brain acquisition in a clinically acceptable time , 2002, Human brain mapping.

[19]  M. Altbach,et al.  High‐resolution diffusion imaging with DIFRAD‐FSE (Diffusion‐Weighted Radial Acquisition of Data With Fast Spin‐Echo) MRI , 1999, Magnetic resonance in medicine.

[20]  Eun-Kee Jeong,et al.  High‐resolution diffusion‐weighted 3D MRI, using diffusion‐weighted driven‐equilibrium (DW‐DE) and multishot segmented 3D‐SSFP without navigator echoes , 2003, Magnetic resonance in medicine.

[21]  S Peled,et al.  Superresolution in MRI: Application to human white matter fiber tract visualization by diffusion tensor imaging , 2001, Magnetic resonance in medicine.

[22]  Jean-Philippe Thiran,et al.  DTI mapping of human brain connectivity: statistical fibre tracking and virtual dissection , 2003, NeuroImage.

[23]  Gareth J. Barker,et al.  A study of the mechanisms of normal-appearing white matter damage in multiple sclerosis using diffusion tensor imaging , 2003, Journal of Neurology.

[24]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[25]  D. Noll,et al.  Homodyne detection in magnetic resonance imaging. , 1991, IEEE transactions on medical imaging.

[26]  P. Boesiger,et al.  SENSE: Sensitivity encoding for fast MRI , 1999, Magnetic resonance in medicine.

[27]  V. Menon,et al.  White matter tract alterations in fragile X syndrome: Preliminary evidence from diffusion tensor imaging , 2003, American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics.

[28]  J. Pauly,et al.  Isotropic diffusion‐weighted and spiral‐navigated interleaved EPI for routine imaging of acute stroke , 1997, Magnetic resonance in medicine.

[29]  C. Sotak,et al.  The role of diffusion tensor imaging in the evaluation of ischemic brain injury – a review , 2002, NMR in biomedicine.

[30]  J. Helpern,et al.  Neuropsychiatric applications of DTI – a review , 2002, NMR in biomedicine.

[31]  P. Morgan,et al.  Pyramidal tract mapping by diffusion tensor magnetic resonance imaging in multiple sclerosis: improving correlations with disability , 2003, Journal of neurology, neurosurgery, and psychiatry.

[32]  Derek K. Jones,et al.  Virtual in Vivo Interactive Dissection of White Matter Fasciculi in the Human Brain , 2002, NeuroImage.

[33]  N. Pelc,et al.  Brain motion: measurement with phase-contrast MR imaging. , 1992, Radiology.

[34]  M A Horsfield,et al.  Diffusion tensor MRI assesses corticospinal tract damage in ALS , 1999, Neurology.

[35]  J. Finsterbusch,et al.  Rapid isotropic diffusion mapping without susceptibility artifacts: Whole brain studies using diffusion‐weighted single‐shot STEAM MR imaging , 2000, Magnetic resonance in medicine.

[36]  P. Basser,et al.  Diffusion tensor MR imaging of the human brain. , 1996, Radiology.

[37]  B. Biswal,et al.  High‐resolution fMRI using multislice partial k‐space GR‐EPI with cubic voxels , 2001, Magnetic resonance in medicine.

[38]  A. Snyder,et al.  Diffusion-tensor MR imaging of gray and white matter development during normal human brain maturation. , 2002, AJNR. American journal of neuroradiology.

[39]  C Thomsen,et al.  High-resolution diffusion imaging using phase-corrected segmented echo-planar imaging. , 2000, Magnetic resonance imaging.

[40]  R. Stollberger,et al.  Improved diffusion‐weighted single‐shot echo‐planar imaging (EPI) in stroke using sensitivity encoding (SENSE) , 2001, Magnetic resonance in medicine.

[41]  P M Jakob,et al.  High-resolution diffusion imaging using a radial turbo-spin-echo sequence: implementation, eddy current compensation, and self-navigation. , 2000, Journal of magnetic resonance.