Mixed Integer Optimization in the Chemical Process Industry: Experience, Potential and Future Perspectives

Proper organization, planning and design of production, storage locations, transportation and scheduling are vital to retain the competitive edge of companies in the global economy.Typical additional problems in the chemical industry suitable for optimization are process design, process synthesis and multi-component blended-flow problems leading to nonlinear or even mixed integer nonlinear models. Mixed integer optimization (MIP) determines optimal solutions of such complex problems; the development of new algorithms, software and hardware allow the solution of larger problems in acceptable times. This tutorial paper addresses two groups. The focus towards the first group (managers and senior executives) and readers who are not very familiar with mathematical programming is to create some awareness regarding the potential benefits of MIP, to transmit a sense of what kind of problems can be tackled, and to increase the acceptance of MIP. The second group (a more technical audience with some background in mathematical optimization), might rather appreciate the state-of-the-art view on good-modelling practice, algorithms and an outlook into global optimization. Some real-world MIP problems solved by BASF's mathematical consultants are briefly described, among them discrete blending and multi-stage production planning and distribution with several sites, products and periods. Finally, there is a focus on future perspectives and sources of MIP support are indicated from academia, software providers and consulting firms.

[1]  J. P. Secrétan,et al.  Der Saccus endolymphaticus bei Entzündungsprozessen , 1944 .

[2]  O. H. Brownlee,et al.  ACTIVITY ANALYSIS OF PRODUCTION AND ALLOCATION , 1952 .

[3]  Ralph E. Gomory,et al.  An algorithm for integer solutions to linear programs , 1958 .

[4]  George B. Dantzig,et al.  Linear programming and extensions , 1965 .

[5]  R. J. Dakin,et al.  A tree-search algorithm for mixed integer programming problems , 1965, Comput. J..

[6]  Rainer E. Burkard,et al.  Methoden der ganzzahligen Optimierung , 1972 .

[7]  G. Nemhauser,et al.  Integer Programming , 2020 .

[8]  A. M. Geoffrion Generalized Benders decomposition , 1972 .

[9]  Harvey J. Greenberg,et al.  Design and implementation of optimization software , 1977, Math. Program..

[10]  M. J. Maher,et al.  Model Building in Mathematical Programming , 1978 .

[11]  Leon S. Lasdon,et al.  Generalized Reduced Gradient Software for Linearly and Nonlinearly Constrained Problems , 1978 .

[12]  Leon S. Lasdon,et al.  Design and Testing of a Generalized Reduced Gradient Code for Nonlinear Programming , 1978, TOMS.

[13]  J. Abadie,et al.  The GRG Method for Nonlinear Programming , 1978 .

[14]  M. S. Bazaraa,et al.  Nonlinear Programming , 1979 .

[15]  Philip E. Gill,et al.  Practical optimization , 1981 .

[16]  Ellis L. Johnson,et al.  Solving Large-Scale Zero-One Linear Programming Problems , 1983, Oper. Res..

[17]  L. Wolsey,et al.  Solving mixed integer programs y automatic reformulation , 1984 .

[18]  Leon S. Lasdon,et al.  An Improved Successive Linear Programming Algorithm , 1985 .

[19]  Omprakash K. Gupta,et al.  Branch and Bound Experiments in Convex Nonlinear Integer Programming , 1985 .

[20]  Ignacio E. Grossmann,et al.  An outer-approximation algorithm for a class of mixed-integer nonlinear programs , 1986, Math. Program..

[21]  Roger Fletcher,et al.  Practical methods of optimization; (2nd ed.) , 1987 .

[22]  Laurence A. Wolsey,et al.  Solving Mixed Integer Programming Problems Using Automatic Reformulation , 1987, Oper. Res..

[23]  R. Fletcher Practical Methods of Optimization , 1988 .

[24]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[25]  M. Padberg,et al.  Addendum: Optimization of a 532-city symmetric traveling salesman problem by branch and cut , 1990 .

[26]  Clóvis C. Gonzaga,et al.  Path-Following Methods for Linear Programming , 1992, SIAM Rev..

[27]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[28]  Roy E. Marsten,et al.  On Implementing Mehrotra's Predictor-Corrector Interior-Point Method for Linear Programming , 1992, SIAM J. Optim..

[29]  R. Sargent,et al.  A general algorithm for short-term scheduling of batch operations */I , 1993 .

[30]  George L. Nemhauser,et al.  Formulating a Mixed Integer Programming Problem to Improve Solvability , 1993, Oper. Res..

[31]  Egon Balas,et al.  A lift-and-project cutting plane algorithm for mixed 0–1 programs , 1993, Math. Program..

[32]  Roy E. Marsten,et al.  COLDSTART -- FLEET ASSIGNMENT AT DELTA AIR LINES. , 1994 .

[33]  E. Andrew Boyd,et al.  Fenchel Cutting Planes for Integer Programs , 1994, Oper. Res..

[34]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[35]  Christodoulos A. Floudas,et al.  Nonlinear and Mixed-Integer Optimization , 1995 .

[36]  J. Kallrath Diskrete Optimierung in der chemischen Industrie , 1995 .

[37]  Michael Jünger,et al.  Mathematik in der Praxis : Fallstudien aus Industrie, Wirtschaft, Naturwissenschaften und Medizin , 1995 .

[38]  Terry P. Harrison,et al.  Global Supply Chain Management at Digital Equipment Corporation , 1995 .

[39]  G. Maddala,et al.  The Pooling Problem , 1996 .

[40]  Y. Ye,et al.  Combining Interior-Point and Pivoting Algorithms for Linear Programming , 1996 .

[41]  Stephen J. Wright Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.

[42]  Gintaras V. Reklaitis,et al.  Issues in the use, design and evolution of process scheduling and planning systems , 1997 .

[43]  R Eglese,et al.  Business Optimisation: Using mathematical programming , 1997, J. Oper. Res. Soc..

[44]  Roberto Tadei,et al.  Operational research in industry , 1999 .

[45]  J. Kallrath The Concept of Contiguity in Models Based on Time-Indexed Formulations , 1999 .

[46]  Josef Kallrath,et al.  Mixed-Integer Nonlinear Programming Applications , 1999 .

[47]  Ignacio E. Grossmann,et al.  Mathematical programming approaches to the synthesis of chemical process systems , 1999 .

[48]  Wolfgang Mackens,et al.  Scientific Computing in Chemical Engineering II , 1999 .

[49]  Panos M. Pardalos,et al.  Introduction to Global Optimization , 2000, Introduction to Global Optimization.

[50]  Josef Kallrath,et al.  Optimal planning in large multi-site production networks , 2000, Eur. J. Oper. Res..

[51]  Michael Hanus,et al.  Programming with Constraints: An Introduction by Kim Marriott and Peter J. Stuckey, MIT Press, 1998. , 2001, Journal of Functional Programming.

[52]  Nikolaos V. Sahinidis,et al.  The Pooling Problem , 2002 .

[53]  Chen Chang Optimal Periodic Scheduling of Multipurpose Batch Plants , 2002 .

[54]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .