Coefficient shifts in geographical ecology: an empirical evaluation of spatial and non-spatial regression

A major focus of geographical ecology and macroecology is to understand the causes of spatially structured ecological patterns. However, achieving this understanding can be complicated when using multiple regression, because the relative importance of explanatory variables, as measured by regression coefficients, can shift depending on whether spatially explicit or non-spatial modeling is used. However, the extent to which coefficients may shift and why shifts occur are unclear. Here, we analyze the relationship between environmental predictors and the geographical distribution of species richness, body size, range size and abundance in 97 multi-factorial data sets. Our goal was to compare standardized partial regression coefficients of non-spatial ordinary least squares regressions (i.e. models fitted using ordinary least squares without taking autocorrelation into account; ‘‘OLS models’’ hereafter) and eight spatial methods to evaluate the frequency of coefficient shifts and identify characteristics of data that might predict when shifts are likely. We generated three metrics of coefficient shifts and eight characteristics of the data sets as predictors of shifts. Typical of ecological data, spatial autocorrelation in the residuals of OLS models was found in most data sets. The spatial models varied in the extent to which they minimized residual spatial autocorrelation. Patterns of coefficient shifts also varied among methods and datasets, although the magnitudes of shifts tended to be small in all cases. We were unable to identify strong predictors of shifts, including the levels of autocorrelation in either explanatory variables or model residuals. Thus, changes in coefficients between spatial and non-spatial methods depend on the method used and are largely idiosyncratic, making it difficult to predict when or why shifts occur. We conclude that the ecological importance of regression coefficients cannot be evaluated with confidence irrespective of whether spatially explicit modelling is used or not. Researchers may have little choice but to be more explicit about the uncertainty of models and more cautious in their interpretation.

Richard Field | Thiago F. Rangel | Bradford A. Hawkins | Miguel B. Araújo | Juli G. Pausas | Miguel Á. Rodríguez | Steven L. Chown | Thierry Oberdorff | Jorge M. Lobo | Joaquín Hortal | Jeremy T. Kerr | Ian J. Kitching | Fabio Suzart de Albuquerque | Carsten Rahbek | Paulo De Marco | W. Daniel Kissling | Ole R. Vetaas | Katrin Böhning-Gaese | Levi Carina Terribile | Nathan J. Sanders | Daniel Montoya | J. Kerr | M. Araújo | C. Rahbek | I. Kitching | N. Sanders | K. Böhning‐Gaese | J. Lobo | J. Pausas | E. Fleishman | Jan Beck | S. Chown | W. Daniel Kissling | I. Morales‐Castilla | T. Rangel | T. Oberdorff | L. M. Bini | J. Hortal | J. Diniz‐Filho | J. Iverson | P. Borges | T. Rangel | L. C. Terribile | P. Borges | A. Baselga | P. Marco | F. Albuquerque | V. K. Chey | Richard Field | José F. Gómez | H. Qian | R. G. Albaladejo | A. Aparicio | Marta Rueda | D. Dobkin | Hong Qian | Jan Beck | Paulo A. V. Borges | Marta Rueda | J. León-Cortés | A. Ruggiero | Vun Khen Chey | Erica Fleishman | Andrés Baselga | M. I. Bellocq | M. Isabel Bellocq | J. Filloy | Miguel Á. Olalla-Tárraga | David S. Dobkin | O. Vetaas | Dolores Ferrer-Castán | John B. Iverson | Ignacio Morales-Castilla | D. Montoya | Jorge L. León-Cortés | Abelardo Aparicio | L. Mauricio Bini | J. Alexandre F Diniz-Filho | Thomas S B Akre | Rafael G. Albaladejo | M. Isabel Bellocq | Isabel Castro-Parga | Julieta Filloy | Juan Castañer Moreno | Adriana Ruggiero | Paula Sackmann | P. Sackmann | D. Ferrer‐Castán | T. Akre | J. Moreno | M. A. Olalla‐Tárraga | J. F. Gómez | W. Kissling | Juan C. Moreno | M. Rodríguez | José F. Gómez | B. Hawkins | Isabel Castro-Parga | Daniel Montoya | Paulo De Marco Jr | L. Mauricio Bini | Vun Khen Chey | Levi Carina Terribile | M. Á. Olalla‐Tárraga | Joaquín Hortal

[1]  Louis Legendre,et al.  The Importance of Being Digital , 1963 .

[2]  Richard Field,et al.  Spatial patterns of woody plant and bird diversity: functional relationships or environmental effects? , 2008 .

[3]  Thiago F. Rangel,et al.  Towards an integrated computational tool for spatial analysis in macroecology and biogeography , 2006 .

[4]  R. G. Davies,et al.  Methods to account for spatial autocorrelation in the analysis of species distributional data : a review , 2007 .

[5]  T. Bailey Spatial Analysis: A Guide for Ecologists , 2006 .

[6]  W. D. Kissling,et al.  Spatial autocorrelation and the selection of simultaneous autoregressive models , 2007 .

[7]  Jessica Gurevitch,et al.  Ecography 25: 601 -- 615, 2002 , 2022 .

[8]  Daniel A. Griffith,et al.  PRACTICAL HANDBOOK of Spatial Statistics , 1998 .

[9]  Anne Lohrli Chapman and Hall , 1985 .

[10]  P. Legendre,et al.  Partialling out the spatial component of ecological variation , 1992 .

[11]  J. Diniz‐Filho,et al.  Red herrings revisited: spatial autocorrelation and parameter estimation in geographical ecology , 2007 .

[12]  K. Bollen,et al.  Interpreting the Results from Multiple Regression and Structural Equation Models , 2005 .

[13]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[14]  Miguel B. Araújo,et al.  Quaternary climate changes explain diversity among reptiles and amphibians , 2008 .

[15]  Noel A. C. Cressie,et al.  Statistics for Spatial Data: Cressie/Statistics , 1993 .

[16]  Jack J. Lennon,et al.  Red-shifts and red herrings in geographical ecology , 2000 .

[17]  Pierre Legendre,et al.  All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices , 2002 .

[18]  Julian D. Olden,et al.  Torturing data for the sake of generality: How valid are our regression models? , 2000 .

[19]  J. Diniz‐Filho,et al.  Non‐stationarity, diversity gradients and the metabolic theory of ecology , 2007 .

[20]  J. Diniz‐Filho,et al.  Partitioning phylogenetic and adaptive components of the geographical body-size pattern of New World birds , 2007 .

[21]  Carol A. Gotway,et al.  Statistical Methods for Spatial Data Analysis , 2004 .

[22]  R. Haining Spatial Data Analysis in the Social and Environmental Sciences , 1990 .

[23]  Chris Chatfield,et al.  Statistical Methods for Spatial Data Analysis , 2004 .

[24]  John Tenhunen,et al.  Application of a geographically‐weighted regression analysis to estimate net primary production of Chinese forest ecosystems , 2005 .

[25]  L. M. Bini,et al.  Local and Regional Species Richness Relationships in Viperid Snake Assemblages from South America: Unsaturated Patterns at Three Different Spatial Scales , 2000, Copeia.

[26]  William B. Krohn,et al.  Importance of spatial autocorrelation in modeling bird distributions at a continental scale , 2006 .

[27]  M. Tognelli,et al.  Analysis of determinants of mammalian species richness in South America using spatial autoregressive models , 2004 .

[28]  J. Diniz‐Filho,et al.  Spatial autocorrelation and red herrings in geographical ecology , 2003 .

[29]  T. Simons,et al.  Spatial autocorrelation and autoregressive models in ecology , 2002 .

[30]  Ingolf Kühn,et al.  Incorporating spatial autocorrelation may invert observed patterns , 2006 .

[31]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[32]  C. Dormann Effects of incorporating spatial autocorrelation into the analysis of species distribution data , 2007 .

[33]  José Alexandre Felizola Diniz-Filho,et al.  Model selection and information theory in geographical ecology , 2008 .

[34]  Giles M. Foody,et al.  Spatial nonstationarity and scale-dependency in the relationship between species richness and environmental determinants for the sub-Saharan endemic avifauna , 2004 .

[35]  Hanna Tuomisto,et al.  DISSECTING THE SPATIAL STRUCTURE OF ECOLOGICAL DATA AT MULTIPLE SCALES , 2004 .

[36]  José Alexandre Felizola Diniz-Filho,et al.  PRODUCTIVITY AND HISTORY AS PREDICTORS OF THE LATITUDINAL DIVERSITY GRADIENT OF TERRESTRIAL BIRDS , 2003 .

[37]  Jennifer A Hoeting,et al.  Model selection for geostatistical models. , 2006, Ecological applications : a publication of the Ecological Society of America.

[38]  Robert P Freckleton,et al.  Why do we still use stepwise modelling in ecology and behaviour? , 2006, The Journal of animal ecology.

[39]  P. Legendre Spatial Autocorrelation: Trouble or New Paradigm? , 1993 .

[40]  N Thompson Hobbs,et al.  Alternatives to statistical hypothesis testing in ecology: a guide to self teaching. , 2006, Ecological applications : a publication of the Ecological Society of America.

[41]  Mark New,et al.  Ensemble forecasting of species distributions. , 2007, Trends in ecology & evolution.

[42]  M. Graham CONFRONTING MULTICOLLINEARITY IN ECOLOGICAL MULTIPLE REGRESSION , 2003 .

[43]  David R. Anderson,et al.  Model Selection and Multimodel Inference , 2003 .

[44]  B. Shipley Cause and Correlation in Biology: Preface , 2000 .

[45]  P. Raju,et al.  Spatial data analysis , 2021, GIS.

[46]  S. Laffan,et al.  Multi‐extent analysis of the relationship between pteridophyte species richness and climate , 2006 .

[47]  Daniel A Griffith,et al.  Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses. , 2006, Ecology.

[48]  José Alexandre Felizola Diniz-Filho,et al.  Modelling geographical patterns in species richness using eigenvector-based spatial filters , 2005 .

[49]  Marie-Josée Fortin,et al.  How to test the significance of the relation between spatially autocorrelated data at the landscape scale: A case study using fire and forest maps , 2002 .