The conceptual design of a PEMFC system via simulation

[1]  Yasuo Miyake,et al.  A study of heat and material balances in an internal-reforming molten carbonate fuel cell , 1995 .

[2]  Christopher E. Borroni-Bird,et al.  Fuel cell commercialization issues for light-duty vehicle applications , 1996 .

[3]  David L. Trimm,et al.  The design and testing of an autothermal reactor for the conversion of light hydrocarbons to hydrogen I. The kinetics of the catalytic oxidation of light hydrocarbons , 1996 .

[4]  B. Höhlein,et al.  Hydrogen from methanol for fuel cells in mobile systems: development of a compact reformer , 1996 .

[5]  Stanislaw E. Golunski,et al.  On-board hydrogen generation for transport applications: the HotSpot™ methanol processor , 1998 .

[6]  Pierre R. Roberge,et al.  Simulation of a 250 kW diesel fuel processor/PEM fuel cell system , 1998 .

[7]  Yong Wang,et al.  Microchannel reactors for fuel processing applications. I. Water gas shift reactor , 1999 .

[8]  D. Chu,et al.  Performance of polymer electrolyte membrane fuel cell (PEMFC) stacks. Part I. Evaluation and simulation of an air-breathing PEMFC stack , 1999 .

[9]  Il-soo Kim,et al.  Purifier-integrated methanol reformer for fuel cell vehicles , 2000 .

[10]  Pierre R. Roberge,et al.  Development and application of a generalised steady-state electrochemical model for a PEM fuel cell , 2000 .

[11]  R Rajasree,et al.  Simulation based synthesis, design and optimization of pressure swing adsorption (PSA) processes , 2000 .

[12]  J. Azevedo,et al.  Modelling the integration of a compact plate steam reformer in a fuel cell system , 2000 .

[13]  Azmi Mohd Shariff,et al.  Application of Sn-activated carbon in pressure swing adsorption for purification of H2 , 2000 .

[14]  R. Wolters,et al.  CO2-scrubbing and methanation as purification system for PEFC , 2000 .

[15]  Xianguo Li,et al.  Modelling of polymer electrolyte membrane fuel cells with variable degrees of water flooding , 2000 .

[16]  Rajesh K. Ahluwalia,et al.  Fuel processors for automotive fuel cell systems: a parametric analysis , 2001 .

[17]  Rongzhong Jiang,et al.  Voltage–time behavior of a polymer electrolyte membrane fuel cell stack at constant current discharge , 2001 .

[18]  James Stephens,et al.  Polymer electrolyte membrane fuel cells for communication applications , 2001 .

[19]  Peter Mizsey,et al.  The kinetics of methanol decomposition: a part of autothermal partial oxidation to produce hydrogen for fuel cells , 2001 .

[20]  Xianguo Li,et al.  Mathematical modeling of proton exchange membrane fuel cells , 2001 .

[21]  J. C. Amphlett,et al.  Incorporation of voltage degradation into a generalised steady state electrochemical model for a PEM fuel cell , 2002 .

[22]  J. M. Zalc,et al.  Fuel processing for PEM fuel cells: transport and kinetic issues of system design , 2002 .

[23]  Development of 10-kWe preferential oxidation system for fuel cell vehicles , 2002 .

[24]  Yong Wang,et al.  Development of a soldier-portable fuel cell power system. Part I: A bread-board methanol fuel processor , 2002 .

[25]  Hee Chun Lim,et al.  Consideration of numerical simulation parameters and heat transfer models for a molten carbonate fuel cell stack , 2002 .

[26]  M. De Francesco,et al.  Start-up analysis for automotive PEM fuel cell systems , 2002 .

[27]  Michel Cassir,et al.  Prospects of different fuel cell technologies for vehicle applications , 2002 .

[28]  Christopher Hebling,et al.  Fuel Cells for Low Power Applications , 2002 .

[29]  Cecilia Wallmark,et al.  Design of stationary PEFC system configurations to meet heat and power demands , 2002 .

[30]  Jeremy P. Meyers,et al.  Design considerations for miniaturized PEM fuel cells , 2002 .

[31]  Günter Wozny,et al.  Heuristic design of pressure swing adsorption: a preliminary study , 2003 .