Genomic analysis of 38 Legionella species identifies large and diverse effector repertoires

[1]  R. Isberg,et al.  MavN is a Legionella pneumophila vacuole-associated protein required for efficient iron acquisition during intracellular growth , 2015, Proceedings of the National Academy of Sciences.

[2]  C. Roy,et al.  Toxicity and SidJ-Mediated Suppression of Toxicity Require Distinct Regions in the SidE Family of Legionella pneumophila Effectors , 2015, Infection and Immunity.

[3]  C. Buchrieser,et al.  IroT/mavN, a new iron-regulated gene involved in Legionella pneumophila virulence against amoebae and macrophages. , 2015, Environmental microbiology.

[4]  J. Sexton,et al.  Spatiotemporal Regulation of a Legionella pneumophila T4SS Substrate by the Metaeffector SidJ , 2015, PLoS pathogens.

[5]  P. De Camilli,et al.  The Machinery at Endoplasmic Reticulum-Plasma Membrane Contact Sites Contributes to Spatial Regulation of Multiple Legionella Effector Proteins , 2014, PLoS pathogens.

[6]  D. Burstein,et al.  Identification of Novel Coxiella burnetii Icm/Dot Effectors and Genetic Analysis of Their Involvement in Modulating a Mitogen-Activated Protein Kinase Pathway , 2014, Infection and Immunity.

[7]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[8]  D. Du,et al.  Variation, Evolution, and Correlation Analysis of C+G Content and Genome or Chromosome Size in Different Kingdoms and Phyla , 2014, PloS one.

[9]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[10]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[11]  D. Lambright,et al.  The Legionella pneumophila GTPase Activating Protein LepB Accelerates Rab1 Deactivation by a Non-canonical Hydrolytic Mechanism* , 2013, The Journal of Biological Chemistry.

[12]  Tal Pupko,et al.  CoPAP: Coevolution of Presence–Absence Patterns , 2013, Nucleic Acids Res..

[13]  Tal Pupko,et al.  Computational modeling and experimental validation of the Legionella and Coxiella virulence-related type-IVB secretion signal , 2013, Proceedings of the National Academy of Sciences.

[14]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[15]  D. Boyd,et al.  Aggravating Genetic Interactions Allow a Solution to Redundancy in a Bacterial Pathogen , 2012, Science.

[16]  P. Novick,et al.  GTPase networks in membrane traffic. , 2012, Annual review of biochemistry.

[17]  K. Aktories,et al.  Domain organization of Legionella effector SetA , 2012, Cellular microbiology.

[18]  A. Biegert,et al.  HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment , 2011, Nature Methods.

[19]  Peer Bork,et al.  SMART 7: recent updates to the protein domain annotation resource , 2011, Nucleic Acids Res..

[20]  I. Rosenshine,et al.  Host Proteasomal Degradation Generates Amino Acids Essential for Intracellular Bacterial Growth , 2011, Science.

[21]  Sean R. Eddy,et al.  Accelerated Profile HMM Searches , 2011, PLoS Comput. Biol..

[22]  R. Heinzen,et al.  Dot/Icm Type IVB Secretion System Requirements for Coxiella burnetii Growth in Human Macrophages , 2011, mBio.

[23]  D. Boyd,et al.  Minimization of the Legionella pneumophila genome reveals chromosomal regions involved in host range expansion , 2011, Proceedings of the National Academy of Sciences.

[24]  Carmen Buchrieser,et al.  Comparative and Functional Genomics of Legionella Identified Eukaryotic Like Proteins as Key Players in Host–Pathogen Interactions , 2011, Front. Microbio..

[25]  A. Yergey,et al.  De-AMPylation of the Small GTPase Rab1 by the Pathogen Legionella pneumophila , 2011, Science.

[26]  Zhao‐Qing Luo,et al.  Legionella pneumophila SidD is a deAMPylase that modifies Rab1 , 2011, Nature.

[27]  D. St Johnston,et al.  Supplementary Figure 5 , 2009 .

[28]  Peer Bork,et al.  Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy , 2011, Nucleic Acids Res..

[29]  R. Vance,et al.  Secreted Bacterial Effectors That Inhibit Host Protein Synthesis Are Critical for Induction of the Innate Immune Response to Virulent Legionella pneumophila , 2011, PLoS pathogens.

[30]  H. Kanuka,et al.  Legionella Metaeffector Exploits Host Proteasome to Temporally Regulate Cognate Effector , 2010, PLoS pathogens.

[31]  Tal Pupko,et al.  GLOOME: gain loss mapping engine , 2010, Bioinform..

[32]  S. Aoki,et al.  Bacterial contact-dependent delivery systems. , 2010, Annual review of genetics.

[33]  M. Šantić,et al.  Exploitation of conserved eukaryotic host cell farnesylation machinery by an F-box effector of Legionella pneumophila , 2010, The Journal of experimental medicine.

[34]  Inna Dubchak,et al.  MicrobesOnline: an integrated portal for comparative and functional genomics , 2009, Nucleic Acids Res..

[35]  Tal Pupko,et al.  Inference and Characterization of Horizontally Transferred Gene Families Using Stochastic Mapping , 2009, Molecular biology and evolution.

[36]  L. Holm,et al.  The Pfam protein families database , 2005, Nucleic Acids Res..

[37]  Miriam L. Land,et al.  Trace: Tennessee Research and Creative Exchange Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification Recommended Citation Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification , 2022 .

[38]  E. Koonin,et al.  Search for a 'Tree of Life' in the thicket of the phylogenetic forest , 2009, Journal of biology.

[39]  Tal Pupko,et al.  Genome-Scale Identification of Legionella pneumophila Effectors Using a Machine Learning Approach , 2009, PLoS pathogens.

[40]  E. Nudler,et al.  Targeting eEF1A by a Legionella pneumophila effector leads to inhibition of protein synthesis and induction of host stress response , 2009, Cellular microbiology.

[41]  H. Hilbi,et al.  Rab1 Guanine Nucleotide Exchange Factor SidM Is a Major Phosphatidylinositol 4-Phosphate-binding Effector Protein of Legionella pneumophila , 2009, Journal of Biological Chemistry.

[42]  M. Heidtman,et al.  The Legionella pneumophila replication vacuole: making a cosy niche inside host cells , 2009, Nature Reviews Microbiology.

[43]  J. Eisen,et al.  A simple, fast, and accurate method of phylogenomic inference , 2008, Genome Biology.

[44]  E. Birney,et al.  Velvet: algorithms for de novo short read assembly using de Bruijn graphs. , 2008, Genome research.

[45]  R. Kleespies,et al.  Type IV secretion system components as phylogenetic markers of entomopathogenic bacteria of the genus Rickettsiella. , 2008, FEMS microbiology letters.

[46]  B. Diederen Legionella spp. and Legionnaires' disease. , 2008, The Journal of infection.

[47]  D. Lambright,et al.  Legionella pneumophila proteins that regulate Rab1 membrane cycling , 2007, Nature.

[48]  H. Hilbi,et al.  Legionella pneumophila Exploits PI(4)P to Anchor Secreted Effector Proteins to the Replicative Vacuole , 2006, PLoS pathogens.

[49]  Gábor Csárdi,et al.  The igraph software package for complex network research , 2006 .

[50]  C. Pericone,et al.  Evidence for Acquisition of Legionella Type IV Secretion Substrates via Interdomain Horizontal Gene Transfer , 2005, Journal of bacteriology.

[51]  P. Robinson,et al.  E3 ubiquitin ligases. , 2005, Essays in biochemistry.

[52]  M. W. Taylor,et al.  'Candidatus Protochlamydia amoebophila', an endosymbiont of Acanthamoeba spp. , 2005, International journal of systematic and evolutionary microbiology.

[53]  T. Zusman,et al.  Coevolution between nonhomologous but functionally similar proteins and their conserved partners in the Legionella pathogenesis system. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[54]  T. Zusman,et al.  The Icm/Dot type-IV secretion systems of Legionella pneumophila and Coxiella burnetii. , 2005, FEMS microbiology reviews.

[55]  C. Buchrieser,et al.  Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity , 2004, Nature Genetics.

[56]  G. Segal,et al.  A Specific Genomic Location within the icm/dot Pathogenesis Region of Different Legionella Species Encodes Functionally Similar but Nonhomologous Virulence Proteins , 2004, Infection and Immunity.

[57]  Daniel C. Desrosiers,et al.  The ankyrin repeat as molecular architecture for protein recognition , 2004, Protein science : a publication of the Protein Society.

[58]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[59]  David Maxwell Chickering,et al.  Learning Bayesian Networks: The Combination of Knowledge and Statistical Data , 1994, Machine Learning.

[60]  C. Stoeckert,et al.  OrthoMCL: identification of ortholog groups for eukaryotic genomes. , 2003, Genome research.

[61]  V. Yu,et al.  Infection due to Legionella species other than L. pneumophila. , 2002, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[62]  Hiroshi Miyamoto,et al.  Application of RNA Polymerase β-Subunit Gene (rpoB) Sequences for the Molecular Differentiation of Legionella Species , 2002, Journal of Clinical Microbiology.

[63]  Barry S. Fields,et al.  Legionella and Legionnaires' Disease: 25 Years of Investigation , 2002, Clinical Microbiology Reviews.

[64]  Hidetoshi Shimodaira An approximately unbiased test of phylogenetic tree selection. , 2002, Systematic biology.

[65]  S. Tabata,et al.  Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. , 2002, DNA research : an international journal for rapid publication of reports on genes and genomes.

[66]  Benjamin A. Shoemaker,et al.  CDD: a database of conserved domain alignments with links to domain three-dimensional structure , 2002, Nucleic Acids Res..

[67]  Masami Hasegawa,et al.  CONSEL: for assessing the confidence of phylogenetic tree selection , 2001, Bioinform..

[68]  H. Shuman,et al.  Legionella pneumophila Utilizes the Same Genes To Multiply within Acanthamoeba castellanii and Human Macrophages , 1999, Infection and Immunity.

[69]  J. C. BurgesChristopher A Tutorial on Support Vector Machines for Pattern Recognition , 1998 .

[70]  H. Shuman,et al.  Host cell killing and bacterial conjugation require overlapping sets of genes within a 22-kb region of the Legionella pneumophila genome. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[71]  R. Isberg,et al.  Conjugative transfer by the virulence system of Legionella pneumophila. , 1998, Science.

[72]  H. Shuman,et al.  Characterization of a new region required for macrophage killing by Legionella pneumophila , 1997, Infection and immunity.

[73]  Gapped BLAST and PSI-BLAST: A new , 1997 .

[74]  B. Fields,et al.  The molecular ecology of legionellae. , 1996, Trends in microbiology.

[75]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[76]  P. Bork Hundreds of ankyrin‐like repeats in functionally diverse proteins: Mobile modules that cross phyla horizontally? , 1993, Proteins.

[77]  A. Lupas,et al.  Predicting coiled coils from protein sequences , 1991, Science.

[78]  H. Hennecke Nitrogen fixation genes involved in the Bradyrhizobium japonicum‐soybean symbiosis , 1990, FEBS letters.