Director orientations in lyotropic liquid crystals: diffusion MRI mapping of the Saupe order tensor.

The macroscopic physical properties of a liquid crystalline material depend on both the properties of the individual crystallites and the details of their spatial arrangement. We propose a diffusion MRI method to estimate the director orientations of a lyotropic liquid crystal as a spatially resolved field of Saupe order tensors. The method relies on varying the shape of the diffusion-encoding tensor to disentangle the effects of voxel-scale director orientational order and the local diffusion anisotropy of the solvent. Proof-of-concept experiments are performed on water in lamellar and reverse hexagonal liquid crystalline systems with intricate patterns of director orientations.

[1]  A. Tracey,et al.  Effect of counterion substitution on the type and nature of nematic lyotropic phases from nuclear magnetic resonance studies , 1976 .

[2]  Carl-Fredrik Westin,et al.  Quantification of microscopic diffusion anisotropy disentangles effects of orientation dispersion from microstructure: Applications in healthy volunteers and in brain tumors , 2015, NeuroImage.

[3]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[4]  P. Kuchel,et al.  Effect of nonrectangular field gradient pulses in the stejskal and tanner ( diffusion) pulse sequence , 1991 .

[5]  R. Blinc,et al.  Self-Diffusion and Molecular Order in Lyotropic Liquid Crystals , 1970 .

[6]  B. Lindman,et al.  Mesophase structure studies by deuteron magnetic resonance. Observations for the sodium octanoate—decanol—water system , 1975 .

[7]  Gordon J. T. Tiddy Nuclear magnetic resonance studies of liquid crystal phase structure and self-diffusion coefficients in the system lithium perfluoro-octanoate + water , 1977 .

[8]  K. Jolley,et al.  Electrical conductivity in macroscopically aligned nematic and lamellar mesophases of the caesium perfluoro-octanoate-water system , 1984 .

[9]  T. Alam,et al.  Self-assembly and magnetic alignment in cetyltrimethylammonium bromide/sodium perfluorooctanoate surfactant mixtures investigated using 2H nuclear magnetic resonance spectroscopy. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[10]  U. Olsson,et al.  Transient and Steady-State Shear Banding in a Lamellar Phase as Studied by Rheo-NMR , 2012 .

[11]  J Hennig,et al.  RARE imaging: A fast imaging method for clinical MR , 1986, Magnetic resonance in medicine.

[12]  Carl-Fredrik Westin,et al.  Q-space trajectory imaging for multidimensional diffusion MRI of the human brain , 2016, NeuroImage.

[13]  M. Yoneya,et al.  Physics of Liquid Crystals , 2014 .

[14]  H. Pfeifer,et al.  PFG n.m.r. study of diffusion anisotropy in oriented ZSM-5 type zeolite crystallites , 1991 .

[15]  B. Halle,et al.  SOLVENT DIFFUSION IN ORDERED MACROFLUIDS : A STOCHASTIC SIMULATION STUDY OF THE OBSTRUCTION EFFECT , 1996 .

[16]  Jennifer R. Brown,et al.  Changing micellar order, lever rule behavior and spatio-temporal dynamics in shear-banding at the onset of the stress plateau , 2011 .

[17]  Tiago M. Ferreira,et al.  NMR Studies of Nonionic Surfactants , 2013 .

[18]  D. Topgaard,et al.  Lamellar phase separation in a centrifugal field. A method for measuring interbilayer forces , 2010 .

[19]  R. Gil,et al.  Probing spatial distribution of alignment by deuterium NMR imaging. , 2013, Chemistry.

[20]  R. Moldovan,et al.  Concentration dependence in the Landau–de Gennes theory for nematic lyotropic liquid crystals , 2001 .

[21]  L. W. Reeves,et al.  New lyotropic liquid crystals composed of finite nonspherical micelles , 1981 .

[22]  G. Ranieri,et al.  Structure of the lamellar lyo-mesophase in water/ammonium perfluorononanoate mixtures: PFG NMR and 2H-NMR investigations , 1988 .

[23]  William S. Price,et al.  NMR Studies of Translational Motion: Frontmatter , 2009 .

[24]  G. Englert,et al.  High-Resolution Nuclear Magnetic Resonance Spectra of Orientated Molecules , 1963 .

[25]  Jennifer R. Brown,et al.  Planar lamellae and onions: a spatially resolved rheo–NMR approach to the shear-induced structural transformations in a surfactant model system , 2011 .

[26]  Diffusion NMR for determining the homogeneous length-scale in lamellar phases. , 2008, The journal of physical chemistry. B.

[27]  D. Capitani,et al.  An NMR study of translational diffusion and structural anisotropy in magnetically alignable nonionic surfactant mesophases. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[28]  Nuclear Magnetic Resonance of Liquid Crystals , 1994 .

[29]  S. Meiboom,et al.  Nuclear magnetic resonance in liquid crystals. , 1968, Science.

[30]  S. Tolbert,et al.  Magnetic-Field-Induced Orientational Ordering of Alkaline Lyotropic Silicate−Surfactant Liquid Crystals , 1997 .

[31]  C. Beaulieu,et al.  The basis of anisotropic water diffusion in the nervous system – a technical review , 2002, NMR in biomedicine.

[32]  S. Wassall Pulsed field gradient-spin echo NMR studies of water diffusion in a phospholipid model membrane. , 1996, Biophysical journal.

[33]  Irving J. Lowe,et al.  A modified pulsed gradient technique for measuring diffusion in the presence of large background gradients , 1980 .

[34]  M. Iwahashi,et al.  Re-entrant lamellar/onion transition with varying temperature under shear flow. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[35]  S. Hess,et al.  Alignment tensor versus director: Description of defects in nematic liquid crystals. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[36]  Hajime Tanaka,et al.  Self-organization in phase separation of a lyotropic liquid crystal into cellular, network and droplet morphologies , 2006, Nature materials.

[37]  T. Alam,et al.  Magnetic alignment of aqueous CTAB in nematic and hexagonal liquid crystalline phases investigated by spin-1 NMR. , 2006, Physical chemistry chemical physics : PCCP.

[38]  U. Olsson,et al.  Shear-induced transitions between a planar lamellar phase and multilamellar vesicles: continuous versus discontinuous transformation. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[39]  S. Funari,et al.  Microscopy, x-ray diffraction, and NMR studies of lyotropic liquid crystal phases in the C22EO6/water system: a new intermediate phase , 1992 .

[40]  K. Lawson,et al.  Magnetically oriented lyotropic luquid crystalline phases , 1967 .

[41]  Ketan Mehta,et al.  Superellipsoid-based, Real Symmetric Traceless Tensor Glyphs Motivated by Nematic Liquid Crystal Alignment Visualization , 2006, IEEE Transactions on Visualization and Computer Graphics.

[42]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[43]  Bak,et al.  REPULSION, A Novel Approach to Efficient Powder Averaging in Solid-State NMR , 1997, Journal of magnetic resonance.

[44]  J. Amédée,et al.  In vitro and in vivo stability of new multilamellar vesicles. , 2000, Life sciences.

[45]  A. Rey Liquid crystal models of biological materials and processes , 2010 .

[46]  Carl-Fredrik Westin,et al.  Constrained optimization of gradient waveforms for generalized diffusion encoding. , 2015, Journal of magnetic resonance.

[47]  J. E. Tanner,et al.  Spin diffusion measurements : spin echoes in the presence of a time-dependent field gradient , 1965 .

[48]  F. Szczepankiewicz,et al.  Microanisotropy imaging: quantification of microscopic diffusion anisotropy and orientational order parameter by diffusion MRI with magic-angle spinning of the q-vector , 2014, Front. Physics.

[49]  K. Götz,et al.  The shape of soap micelles and other polyions as obtained from anisotropy of electrical conductivity , 1958 .

[50]  João P de Almeida Martins,et al.  Two-Dimensional Correlation of Isotropic and Directional Diffusion Using NMR. , 2016, Physical review letters.

[51]  Evolution of a lamellar domain structure for an equilibrating lyotropic liquid crystal. , 2006, The journal of physical chemistry. B.

[52]  S. Lasič,et al.  Isotropic diffusion weighting in PGSE NMR by magic-angle spinning of the q-vector. , 2013, Journal of magnetic resonance.

[53]  Measurements of the conductivity and relaxation times for the micellar nematic phase of the system ammonium perfluorononanoate/H2O , 1986 .

[54]  K. Lawson,et al.  Mesomorphic phases. II. Proton and deuterium magnetic resonance studies of the dimethyldodecylamine oxide-deuterium oxide system , 1968 .

[55]  P. Kingsley,et al.  Introduction to diffusion tensor imaging mathematics: Part I. Tensors, rotations, and eigenvectors , 2006 .

[56]  R. Blinc,et al.  Anisotropy of Self-Diffusion in the Smectic-A and Smectic-C Phases , 1974 .

[57]  W. Richtering,et al.  Nonionic Amphiphilic Bilayer Structures under Shear , 2001 .

[58]  Peter Lindner,et al.  Shear-induced morphology transition and microphase separation in a lamellar phase doped with clay particles. , 2004, Langmuir.

[59]  The electric conductivity of the lamellar smectic, the micellar nematic, and the isotropic micellar solution of ammonium perfluorononanoate in water , 1986 .

[60]  Alejandro D. Rey,et al.  Orientation mode selection mechanisms for sheared nematic liquid crystalline materials , 1998 .

[61]  George S. Attard,et al.  Liquid-crystalline phases as templates for the synthesis of mesoporous silica , 1995, Nature.

[62]  P. Callaghan,et al.  Is a birefringence band a shear band? , 2000 .

[63]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[64]  Carl-Fredrik Westin,et al.  NMR diffusion-encoding with axial symmetry and variable anisotropy: Distinguishing between prolate and oblate microscopic diffusion tensors with unknown orientation distribution. , 2015, The Journal of chemical physics.

[65]  Daniel Topgaard,et al.  Multi-Scale Characterization of Lyotropic Liquid Crystals Using 2H and Diffusion MRI with Spatial Resolution in Three Dimensions , 2014, PloS one.

[66]  J. Litster,et al.  Pretransitional effects in the isotropic phase of a lyotropic nematic liquid crystal , 1983 .

[67]  J. Prestegard,et al.  Characterization of field-ordered aqueous liquid crystals by NMR diffusion measurements , 1993 .

[68]  A. Bax,et al.  Morphology of three lyotropic liquid crystalline biological NMR media studied by translational diffusion anisotropy. , 2001, Journal of the American Chemical Society.

[69]  G. Tiddy Surfactant-water liquid crystal phases , 1980 .

[70]  F. Tiberg,et al.  Drug delivery applications of non-lamellar liquid crystalline phases and nanoparticles , 2011 .

[71]  D. Topgaard Isotropic diffusion weighting in PGSE NMR: Numerical optimization of the q-MAS PGSE sequence , 2013 .

[72]  Hallé,et al.  Orientational order and micelle size in the nematic phase of the cesium pentadecafluorooctanoate-water system from the anisotropic self-diffusion of water. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[73]  J. Honerkamp,et al.  Determination of orientational distributions from 2H NMR data by a regularization method , 1999 .

[74]  Godfrey L. Smith,et al.  Slowing of Electrical Activity in Ventricular Fibrillation is Not Associated with Increased Defibrillation Energies in the Isolated Rabbit Heart , 2011, Front. Physio..

[75]  B. Jönsson Surfactants and Polymers in Aqueous Solution , 1998 .