Extrapolation methods for some singular fixed point sequences

A fixed point sequence is singular if the Jacobian matrix at the limit has 1 as an eigenvalue. The asymptotic behaviour of some singular fixed point sequences in one dimension are extended toN dimensions. Three algorithms extrapolating singular fixed point sequences inN dimensions are given. Using numerical examples three algorithms are tested and compared.

[1]  C. Brezinski Generalisations de la transformation de shanks, de la table de Pade et de l'ε-algorithme , 1975 .

[2]  A. Ostrowski Solution of equations and systems of equations , 1967 .

[3]  Tatsuo Noda The Steffensen iteration method for systems of nonlinear equations, II , 1987 .

[4]  E. Gekeler,et al.  On the solution of systems of equations by the epsilon algorithm of Wynn , 1972 .

[5]  C. Kelley,et al.  Sublinear convergence of the Chord method at singular points , 1983 .

[6]  A. Sidi,et al.  Extrapolation methods for vector sequences , 1987 .

[7]  P. Sablonnière Convergence acceleration of logarithmic fixed point sequences , 1987 .

[8]  P. Henrici Elements of numerical analysis , 1966 .

[9]  Acceleration methods for vector sequences , 1991 .

[10]  Stig Skelboe,et al.  Computation of the periodic steady-state response of nonlinear networks by extrapolation methods , 1980 .

[11]  Khalide Jbilou,et al.  Some results about vector extrapolation methods and related fixed-point iterations , 1991 .

[12]  N. D. Bruijn Asymptotic methods in analysis , 1958 .

[13]  H. Keller,et al.  Analysis of Numerical Methods , 1969 .

[14]  Cuy Antoine Sedogbo Convergence acceleration of some logarithmic sequences , 1990 .

[15]  Paul Sablonnière,et al.  Comparison of four algorithms accelerating the convergence of a subset of logarithmic fixed point sequences , 1991, Numerical Algorithms.

[16]  Naoki Osada,et al.  Extensions of Levin's transformations to vector sequences , 1992, Numerical Algorithms.