Towards Massive Parallel Fluid Flow Simulations in Computational Engineering

As computer power still grows exponentially, engineering-based problems can be simulated today, which were deemed unsolvable a decade ago. In this work, a simulation pipeline able to work efficiently on massive parallel systems is presented, based on a newly introduced data structure together with an efficient multi-grid-like solver technique. Complex examples and an interactive visualisation are presented in order to demonstrate the capabilities of the chosen approach.

[1]  G. D. Davis Natural convection of air in a square cavity: A bench mark numerical solution , 1983 .

[2]  Gail Brager,et al.  Thermal comfort in naturally ventilated buildings: revisions to ASHRAE Standard 55 , 2002 .

[3]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[4]  R. Rannacher,et al.  Benchmark Computations of Laminar Flow Around a Cylinder , 1996 .

[5]  A. N. Kolmogorov Equations of turbulent motion in an incompressible fluid , 1941 .

[6]  J. Ferziger,et al.  Improved subgrid-scale models for large-eddy simulation , 1980 .

[7]  Jack Dongarra,et al.  Computational Science: Ensuring America's Competitiveness , 2005 .

[8]  Ralf-Peter Mundani,et al.  Adaptive Distributed Data Structure Management for Parallel CFD Applications , 2013, 2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing.

[9]  Ralf-Peter Mundani,et al.  Communication Schemes of a Parallel Fluid Solver for Multi-scale Environmental Simulations , 2011, 2011 13th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing.

[10]  Brian Cabral,et al.  Imaging vector fields using line integral convolution , 1993, SIGGRAPH.

[11]  A. Gagge,et al.  Rational temperature indices of man's thermal environment and their use with a 2-node model of his temperature regulation. , 1973, Federation proceedings.

[12]  Ralf-Peter Mundani,et al.  Adaptive Data Structure Management for Grid Based Simulations in Engineering Applications , 2011 .

[13]  K. Lomas,et al.  Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions , 2001, International journal of biometeorology.

[14]  Michael Manhart,et al.  Large-Eddy Simulation of Turbulent Boundary Layer Flow over a Hemisphere , 1994 .

[15]  Naoki Matsubara,et al.  Radiative and convective heat transfer coefficients of the human body in natural convection , 2008 .

[16]  Chang Shu,et al.  Numerical computation of three-dimensional incompressible viscous flows in the primitive variable form by local multiquadric differential quadrature method , 2006 .

[17]  Christoph van Treeck,et al.  Temperaturfeldberechnung aus einer Particle Image Velocimetry (PIV)‐Messung einer natürlichen Auftriebsströmung , 2013 .

[18]  Joel H. Ferziger,et al.  Computational methods for fluid dynamics , 1996 .

[19]  Ernst Rank,et al.  Integrated thermal comfort analysis using a parametric manikin model for interactive real-time simulation , 2009 .

[20]  Andreas Meister,et al.  Numerik linearer Gleichungssysteme , 1999 .

[21]  Walter Tollmien,et al.  Über ein neues Formelsystem für die ausgebildete Turbulenz , 1961 .

[22]  Ralf-Peter Mundani,et al.  Resolving Neighbourhood Relations in a Parallel Fluid Dynamic Solver , 2012, 2012 11th International Symposium on Parallel and Distributed Computing.

[23]  P. Sagaut Large Eddy Simulation for Incompressible Flows , 2001 .

[24]  Wolfgang Rodi,et al.  Scrutinizing the k-ε Turbulence Model Under Adverse Pressure Gradient Conditions , 1986 .

[25]  Ulrich Rüde,et al.  WaLBerla: Exploiting Massively Parallel Systems for Lattice Boltzmann Simulations , 2009 .

[26]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[27]  Ernst Rank,et al.  Finite cell method , 2007 .

[28]  J H Ferziger,et al.  Tests of Subgrid-Scale Models in Strained Turbulence. Studies of the Structure of Homogeneous Shear Flows. Developing a Model of Turbulence Near a Wall from Solutions of the Navier-Stokes Equations. , 1980 .

[29]  Hans-Joachim Bungartz,et al.  Simulierte Welten - die Zukunft im Rechner , 2002 .

[30]  U. Ghia,et al.  High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .

[31]  Ching-Jen Chen,et al.  Fundamentals of turbulence modeling , 1998 .

[32]  A. Bejan Convection Heat Transfer , 1984 .

[33]  Petra Wenisch,et al.  Computational Steering of CFD Simulations on Teraflop-Supercomputers , 2008 .

[34]  C. W. Hirt,et al.  SOLA: a numerical solution algorithm for transient fluid flows , 1975 .

[35]  Michael Griebel,et al.  Numerical Simulation in Fluid Dynamics: A Practical Introduction , 1997 .

[36]  Jack Dongarra,et al.  Sourcebook of parallel computing , 2003 .

[37]  Achi Brandt,et al.  Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics, Revised Edition , 2011 .

[38]  M. F. Tomé,et al.  GENSMAC: a computational marker and cell method for free surface flows in general domains , 1994 .

[39]  Ralf-Peter Mundani Hierarchische Geometriemodelle zur Einbettung verteilter Simulationsaufgaben , 2006 .

[40]  J. A. Somers,et al.  Numerical simulation of free convective flow using the lattice-Boltzmann scheme , 1995 .

[41]  T. Taylor,et al.  Computational methods for fluid flow , 1982 .

[42]  H. Hahn Leçons sur l'intégration et la recherche des fonctions primitives , 1904 .

[43]  Th. von Kármán Mechanische Aenlichkeit und Turbulenz , 1930 .

[44]  T. Taylor,et al.  A Pseudospectral method for solution of the three-dimensional incompressible Navier-Stokes equations , 1987 .

[45]  Christoph van Treeck,et al.  Introduction to Building Performance Modeling and Simulation , 2010 .

[46]  J.L.M. Hensen Energy simulation in building design , 1992 .

[47]  George E. Karniadakis,et al.  A new domain decomposition method with overlapping patches for ultrascale simulations: Application to biological flows , 2010, J. Comput. Phys..

[48]  Hugh Garraway Parallel Computer Architecture: A Hardware/Software Approach , 1999, IEEE Concurrency.

[49]  J. Ferziger,et al.  A ghost-cell immersed boundary method for flow in complex geometry , 2002 .

[50]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[51]  F. White Viscous Fluid Flow , 1974 .

[52]  Jan A. J. Stolwijk,et al.  A mathematical model of physiological temperature regulation in man , 1971 .

[53]  K. Lomas,et al.  A computer model of human thermoregulation for a wide range of environmental conditions: the passive system. , 1999, Journal of applied physiology.

[54]  Ralf-Peter Mundani,et al.  Towards Interactive HPC: Sliding Window Data Transfer , 2013, CloudCom 2013.

[55]  O. C. Zienkiewicz,et al.  The Finite Element Method: Its Basis and Fundamentals , 2005 .

[56]  Christoph van Treeck,et al.  Model-adaptive analysis of indoor thermal comfort , 2009 .

[57]  Hanan Samet,et al.  The Design and Analysis of Spatial Data Structures , 1989 .

[58]  R. Verzicco,et al.  Combined Immersed-Boundary Finite-Difference Methods for Three-Dimensional Complex Flow Simulations , 2000 .

[59]  C. van Treeck,et al.  Virtual Climate Chamber Entwicklung einer interaktiven Simulationsumgebung für thermische Komfortanalysen , 2009 .

[60]  George Cybenko,et al.  Dynamic Load Balancing for Distributed Memory Multiprocessors , 1989, J. Parallel Distributed Comput..

[61]  G. Batchelor,et al.  An Introduction to Fluid Dynamics , 1968 .

[62]  Hidajet Hadzic,et al.  Development and Application of Finite Volume Method for the Computation of Flows Around Moving Bodies on Unstructured, Overlapping Grids , 2006 .

[63]  Satoshi Matsuoka,et al.  Peta-scale phase-field simulation for dendritic solidification on the TSUBAME 2.0 supercomputer , 2011, 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC).

[64]  Robert B. Ross,et al.  The Top 10 Challenges in Extreme-Scale Visual Analytics , 2012, IEEE Computer Graphics and Applications.

[65]  J A Stolwijk Sick-building syndrome. , 1991, Environmental health perspectives.

[66]  J. Ferziger Numerical methods for engineering application , 1981 .

[67]  Timothy Nigel Phillips,et al.  Natural convection in an enclosed cavity , 1984 .

[68]  P. LeQuéré,et al.  Accurate solutions to the square thermally driven cavity at high Rayleigh number , 1991 .

[69]  D. Wilcox Turbulence modeling for CFD , 1993 .

[70]  A. Chorin Numerical Solution of the Navier-Stokes Equations* , 1989 .

[71]  Michael Bader,et al.  Space-Filling Curves - An Introduction with Applications in Scientific Computing , 2012, Texts in Computational Science and Engineering.

[72]  J. Lumley,et al.  A First Course in Turbulence , 1972 .

[73]  R. Courant,et al.  Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .

[74]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[75]  Peter Deuflhard,et al.  Numerische Mathematik. I , 2002 .

[76]  Eftychios Sifakis,et al.  A parallel multigrid Poisson solver for fluids simulation on large grids , 2010, SCA '10.

[77]  B. Launder,et al.  Mathematical Models of turbulence , 1972 .

[78]  P. O. Fanger,et al.  Thermal comfort: analysis and applications in environmental engineering, , 1972 .

[79]  Michael Pfaffinger Interaktive Strömungssimulation auf Hochleistungsrechnern unter Anwendung der Lattice-Boltzmann Methode , 2012 .

[80]  R.J.A. Janssen Instabilities in natural-convection flows in cavities , 1994 .

[81]  S. Turek,et al.  Benchmark computations based on Lattice-Boltzmann, Finite Element and Finite Volume Methods for laminar Flows , 2006 .

[82]  S. Orszag,et al.  Renormalization group analysis of turbulence. I. Basic theory , 1986, Physical review letters.

[83]  J. Lienhard A heat transfer textbook , 1981 .

[84]  Richard Vynne Southwell,et al.  On maintained convective motion in a fluid heated from below , 1940, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[85]  Stefan Paulke,et al.  SOME CONSIDERATIONS ON GLOBAL AND LOCAL THERMAL COMFORT BASED ON FIALA ‘ S THERMAL MANIKIN IN THESEUS-FE , 2007 .

[86]  C.R. Johnson,et al.  SCIRun: A Scientific Programming Environment for Computational Steering , 1995, Proceedings of the IEEE/ACM SC95 Conference.

[87]  Ralf-Peter Mundani,et al.  Multiskalen-Strömungssimulation eines Kraftwerkskomplexes auf Höchstleistungsrechnern , 2010 .

[88]  A. Leonard Energy Cascade in Large-Eddy Simulations of Turbulent Fluid Flows , 1975 .

[89]  Christoph Alban Treeck Gebäudemodell-basierte Simulation von Raumluftströmungen , 2004 .

[90]  P. Moin,et al.  Application of a Fractional-Step Method to Incompressible Navier-Stokes Equations , 1984 .

[91]  C. Hirsch,et al.  Numerical Computation of Internal and External Flows. By C. HIRSCH. Wiley. Vol. 1, Fundamentals of Numerical Discretization. 1988. 515 pp. £60. Vol. 2, Computational Methods for Inviscid and Viscous Flows. 1990, 691 pp. £65. , 1991, Journal of Fluid Mechanics.

[92]  Jungwoo Kim,et al.  An immersed-boundary finite-volume method for simulations of flow in complex geometries , 2001 .

[93]  Ulrich Rüde,et al.  Parallel multigrid on hierarchical hybrid grids: a performance study on current high performance computing clusters , 2014, Concurr. Comput. Pract. Exp..

[94]  P. Moin,et al.  Effects of the Computational Time Step on Numerical Solutions of Turbulent Flow , 1994 .

[95]  Ralf-Peter Mundani,et al.  PARALLEL MULTI-GRID LIKE SOLVER FOR THE PRESSURE POISSON EQUATION IN FLUID FLOW APPLICATIONS , 2013 .

[96]  Ralf-Peter Mundani,et al.  Adaptive Multi-Grid Methods for Parallel CFD Applications , 2014, Scalable Comput. Pract. Exp..