A tree-decomposed transfer matrix for computing exact Potts model partition functions for arbitrary graphs, with applications to planar graph colourings

Combining tree decomposition and transfer matrix techniques provides a very general algorithm for computing exact partition functions of statistical models defined on arbitrary graphs. The algorithm is particularly efficient in the case of planar graphs. We illustrate it by computing the Potts model partition functions and chromatic polynomials (the number of proper vertex colourings using Q colours) for large samples of random planar graphs with up to N = 100 vertices. In the latter case, our algorithm yields a sub-exponential average running time of , a substantial improvement over the exponential running time ~exp (0.245N) provided by the hitherto best-known algorithm. We study the statistics of chromatic roots of random planar graphs in some detail, comparing the findings with results for finite pieces of a regular lattice.

[1]  M. M. Algæ , 2022 .

[2]  N. Alon,et al.  A separator theorem for nonplanar graphs , 1990 .

[3]  Gordon F. Royle,et al.  Computing Tutte Polynomials , 2010, ACM Trans. Math. Softw..

[4]  Arie M. C. A. Koster,et al.  Treewidth computations I. Upper bounds , 2010, Inf. Comput..

[5]  Jesper Lykke Jacobsen,et al.  Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models , 2004 .

[6]  K. Dean,et al.  A 20 By , 2009 .

[7]  Riccardo Zecchina,et al.  Coloring random graphs , 2002, Physical review letters.

[8]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[9]  W. T. Tutte,et al.  A Contribution to the Theory of Chromatic Polynomials , 1954, Canadian Journal of Mathematics.

[10]  Hans L. Bodlaender,et al.  A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..

[11]  R. Baxter Critical antiferromagnetic square-lattice Potts model , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[12]  H. Whitney A logical expansion in mathematics , 1932 .

[13]  Alan D. Sokal,et al.  Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models. III. Triangular-Lattice Chromatic Polynomial , 2002, cond-mat/0204587.

[14]  Jesper Lykke Jacobsen,et al.  Phase diagram of the chromatic polynomial on a torus , 2007 .

[15]  H. Saleur,et al.  The antiferromagnetic Potts model in two dimensions: Berker-Kadanoff phase, antiferromagnetic transition, and the role of Beraha numbers , 1991 .

[16]  Alan D. Sokal,et al.  Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models. I. General Theory and Square-Lattice Chromatic Polynomial , 2001 .

[17]  Hubert Saleur,et al.  Zeroes of chromatic polynomials: A new approach to Beraha conjecture using quantum groups , 1990 .

[18]  B. M. Fulk MATH , 1992 .

[19]  D. Vernon Inform , 1995, Encyclopedia of the UN Sustainable Development Goals.

[20]  M. Nightingale,et al.  Critical behaviour of the two-dimensional Potts model with a continuous number of states; A finite size scaling analysis , 1982 .

[21]  R. Baxter,et al.  Chromatic polynomials of large triangular lattices , 1987 .

[22]  D. Welsh,et al.  On the computational complexity of the Jones and Tutte polynomials , 1990, Mathematical Proceedings of the Cambridge Philosophical Society.

[23]  Steven D. Noble,et al.  Evaluating the Tutte Polynomial for Graphs of Bounded Tree-Width , 1998, Combinatorics, Probability and Computing.

[24]  G. Royle Planar Triangulations with Real Chromatic Roots Arbitrarily Close to 4 , 2005, math/0511304.

[25]  Paul D. Seymour,et al.  Graph minors. III. Planar tree-width , 1984, J. Comb. Theory B.

[26]  R. Baxter,et al.  q colourings of the triangular lattice , 1986 .

[27]  C. Fortuin,et al.  On the random-cluster model: I. Introduction and relation to other models , 1972 .

[28]  Alan D. Sokal,et al.  Chromatic Roots are Dense in the Whole Complex Plane , 2000, Combinatorics, Probability and Computing.

[29]  Dominic J. A. Welsh,et al.  The Computational Complexity of Some Classical Problems from Statistical Physics , 1990 .

[30]  Jesper Lykke Jacobsen,et al.  Bulk, surface and corner free-energy series for the chromatic polynomial on the square and triangular lattices , 2010, 1005.3609.

[31]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[32]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[33]  Bill Jackson,et al.  A Zero-Free Interval for Chromatic Polynomials of Graphs , 1993, Combinatorics, Probability and Computing.

[34]  Dimitrios M. Thilikos,et al.  A Simple and Fast Approach for Solving Problems on Planar Graphs , 2004, STACS.

[35]  R. B. Potts Some generalized order-disorder transformations , 1952, Mathematical Proceedings of the Cambridge Philosophical Society.

[36]  Éric Fusy,et al.  Uniform random sampling of planar graphs in linear time , 2007, Random Struct. Algorithms.

[37]  G. Birkhoff A Determinant Formula for the Number of Ways of Coloring a Map , 1912 .

[38]  M. .. Moore Exactly Solved Models in Statistical Mechanics , 1983 .

[39]  Carsten Thomassen,et al.  The Zero-Free Intervals for Chromatic Polynomials of Graphs , 1997, Combinatorics, Probability and Computing.