Inkjet printed conductive polymer-based beam-splitters for terahertz applications

Terahertz beam-splitters are fabricated from conductive polymers inkjet printed onto an acetate film substrate. The principle is a significant evolution of the recently proposed ultra-thin beam-splitter realized using silver conductive paint. The splitting ratios of the beam-splitters are dependent on the thickness and conductivity of the conductive polymer layer, allowing for any splitting ratio to be achieved accurately from a controlled printing process. As the processing technology of conductive polymers matures, this approach will allow for low cost and accurate fabrication of THz beam-splitters with a predefined near frequency-independent splitting ratio, in contrast to the commonly used float zone silicon wafers.

[1]  A. Heeger,et al.  Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x , 1977 .

[2]  Hongkyu Park,et al.  Robust Thin-Film Wire-Grid THz Polarizer Fabricated Via a Low-Cost Approach , 2013, IEEE Photonics Technology Letters.

[3]  J. Lewis,et al.  Reactive silver inks for patterning high-conductivity features at mild temperatures. , 2012, Journal of the American Chemical Society.

[5]  S. Subhechha,et al.  Quasi-optical terahertz polarizers enabled by inkjet printing of carbon nanocomposites , 2012 .

[6]  Jean-Louis Miane,et al.  Dielectric properties of conducting polyaniline films by THz time-domain spectroscopy , 2008 .

[7]  Xiangjun Li,et al.  Terahertz polarizing beam splitter based on copper grating on polyimide substrate , 2012, Photonics Asia.

[8]  Guozhong Zhao,et al.  Numerical simulation of terahertz transmission of bilayer metallic meshes with different thickness of substrates , 2012, Photonics Asia.

[9]  R. Leonhardt,et al.  Aspheric lenses for Terahertz imaging , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[10]  C. Otani,et al.  Effect of solvent on carrier transport in poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) studied by terahertz and infrared-ultraviolet spectroscopy , 2011 .

[11]  M. Tinkham Energy Gap Interpretation of Experiments on Infrared Transmission through Superconducting Films , 1956 .

[12]  O. Efimov,et al.  POLYPYRROLE : A CONDUCTING POLYMER; ITS SYNTHESIS, PROPERTIES AND APPLICATIONS , 1997 .

[13]  David B Tanner,et al.  Silicon beam splitter for far-infrared and terahertz spectroscopy. , 2007, Applied optics.

[14]  Peter Uhd Jepsen,et al.  Bendable, low-loss Topas fibers for the terahertz frequency range. , 2009, Optics express.

[15]  Martin Koch,et al.  Paper terahertz wave plates. , 2011, Optics express.

[16]  Martin Koch,et al.  Variable-focus terahertz lens. , 2011, Optics express.

[17]  Alan J. Heeger,et al.  Solitons in conducting polymers , 1988 .

[18]  Martin Koch,et al.  Terahertz lenses made by compression molding of micropowders. , 2011, Applied optics.

[19]  Degang Xu,et al.  Compact terahertz wave polarizing beam splitter. , 2010, Applied optics.

[20]  J. Reynolds,et al.  Poly(3,4‐ethylenedioxythiophene) and Its Derivatives: Past, Present, and Future , 2000 .

[21]  A. K. Mukherjee,et al.  Electrical characterization of conducting polypyrrole by THz time-domain spectroscopy , 2000 .

[22]  Rainer Leonhardt,et al.  Aspheric lenses for terahertz imaging , 2008 .

[23]  G. Wallace,et al.  Gemini surfactant doped polypyrrole nanodispersions: an inkjet printable formulation , 2011 .

[24]  Rajind Mendis,et al.  Comparison of the lowest-order transverse-electric (TE1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications. , 2009, Optics express.

[25]  Maciej Sypek,et al.  Off-axis metallic diffractive lens for terahertz beams. , 2011, Optics letters.

[26]  D. Abbott,et al.  Direct probing of evanescent field for characterization of porous terahertz fibers , 2011 .

[27]  M. R. Freeman,et al.  Terahertz conductivity of thin gold films at the metal-insulator percolation transition , 2007 .

[28]  M. Koch,et al.  Highly accurate optical material parameter determination with THz time-domain spectroscopy. , 2007, Optics express.

[29]  Masayoshi Tonouchi,et al.  Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks. , 2012, Nano letters.

[30]  Christopher W. Berry,et al.  Broadband Terahertz Polarizing Beam Splitter on a Polymer Substrate , 2012 .

[31]  Zhao Cheng-da,et al.  Solitons on conducting polymers , 2005 .

[33]  Siegfried Bauer Optical properties of a metal film and its application as an infrared absorber and as a beam splitter , 1992 .

[34]  Derek Abbott,et al.  Low-cost ultra-thin broadband terahertz beam-splitter. , 2012, Optics express.

[35]  Bora Ung,et al.  Polymer microstructured optical fibers for terahertz wave guiding. , 2011, Optics express.