Analytical study of certain magnetohydrodynamic-α models

In this paper we present an analytical study of a subgrid scale turbulence model of the three-dimensional magnetohydrodynamic (MHD) equations, inspired by the Navier-Stokes-α (also known as the viscous Camassa-Holm equations or the Lagrangian-averaged Navier-Stokes-α model). Specifically, we show the global well-posedness and regularity of solutions of a certain MHD-α model (which is a particular case of the Lagrangian averaged magnetohydrodynamic-α model without enhancing the viscosity for the magnetic field). We also introduce other subgrid scale turbulence models, inspired by the Leray-α and the modified Leray-α models of turbulence. Finally, we discuss the relation of the MHD-α model to the MHD equations by proving a convergence theorem, that is, as the length scale α tends to zero, a subsequence of solutions of the MHD-α equations converges to a certain solution (a Leray-Hopf solution) of the three-dimensional MHD equations.

[1]  V. Chepyzhov,et al.  On the convergence of solutions of the Leray-$\alpha $ model to the trajectory attractor of the 3D Navier-Stokes system , 2006 .

[2]  Roger Lewandowski,et al.  Vorticities in a LES Model for 3D Periodic Turbulent Flows , 2006 .

[3]  Razvan C. Fetecau,et al.  A Hamiltonian Regularization of the Burgers Equation , 2006, J. Nonlinear Sci..

[4]  Alexei Ilyin,et al.  A modified-Leray-α subgrid scale model of turbulence , 2006 .

[5]  William Layton,et al.  On a well-posed turbulence model , 2005 .

[6]  Darryl D. Holm,et al.  Inertial Range Scaling, Karman-Howarth Theorem and Intermittency for Forced and Decaying Lagrangian Averaged MHD in 2D , 2005, physics/0508173.

[7]  D. Hughes,et al.  Fluid Dynamics and Dynamos in Astrophysics and Geophysics , 2005 .

[8]  Darryl D. Holm,et al.  On a Leray–α model of turbulence , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[9]  Annick Pouquet,et al.  Numerical solutions of the three-dimensional magnetohydrodynamic alpha model. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  P. Mininni,et al.  A numerical study of the alpha model for two-dimensional magnetohydrodynamic turbulent flows , 2004, physics/0410159.

[11]  Darryl D. Holm,et al.  Modeling Mesoscale Turbulence in the Barotropic Double-Gyre Circulation , 2003 .

[12]  William J. Layton,et al.  A simple and stable scale-similarity model for large Eddy simulation: Energy balance and existence of weak solutions , 2003, Appl. Math. Lett..

[13]  Jerrold E. Marsden,et al.  Numerical simulations of the Lagrangian averaged Navier-Stokes equations for homogeneous isotropic turbulence , 2003 .

[14]  Darryl D. Holm,et al.  Regularization modeling for large-eddy simulation , 2002, nlin/0206026.

[15]  Darryl D. Holm Lagrangian averages, averaged Lagrangians, and the mean effects of fluctuations in fluid dynamics. , 2002, Chaos.

[16]  Darryl D. Holm Variational Principles for Lagrangian Averaged Fluid Dynamics , 2001, nlin/0103043.

[17]  Darryl D. Holm,et al.  The Three Dimensional Viscous Camassa–Holm Equations, and Their Relation to the Navier–Stokes Equations and Turbulence Theory , 2001, nlin/0103039.

[18]  Darryl D. Holm,et al.  The Navier–Stokes-alpha model of fluid turbulence , 2001, nlin/0103037.

[19]  Darryl D. Holm Averaged Lagrangians and the mean effects of fluctuations in ideal fluid dynamics , 2001, nlin/0103035.

[20]  P. Constantin,et al.  An Eulerian–Lagrangian Approach¶to the Navier–Stokes Equations , 2000, math/0005116.

[21]  Darryl D. Holm,et al.  The Camassa-Holm equations and turbulence , 1999 .

[22]  Darryl D. Holm,et al.  A connection between the Camassa–Holm equations and turbulent flows in channels and pipes , 1999, chao-dyn/9903033.

[23]  Darryl D. Holm Fluctuation effects on 3D Lagrangian mean and Eulerian mean fluid motion , 1999, chao-dyn/9903034.

[24]  Darryl D. Holm,et al.  Camassa-Holm Equations as a Closure Model for Turbulent Channel and Pipe Flow , 1998, chao-dyn/9804026.

[25]  Darryl D. Holm,et al.  The Euler–Poincaré Equations and Semidirect Products with Applications to Continuum Theories , 1998, chao-dyn/9801015.

[26]  Donald A. Jones,et al.  On the effectiveness of the approximate inertial manifold—a computational study , 1995 .

[27]  E. Titi,et al.  Exponential decay rate of the power spectrum for solutions of the Navier--Stokes equations , 1995 .

[28]  R. Temam,et al.  Gevrey class regularity for the solutions of the Navier-Stokes equations , 1989 .

[29]  O. Ladyzhenskaya The Boundary Value Problems of Mathematical Physics , 1985 .

[30]  Roger Temam,et al.  Some mathematical questions related to the MHD equations , 1983 .

[31]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[32]  V. Chepyzhov ON THE CONVERGENCE OF SOLUTIONS OF THE LERAY-α MODEL TO THE TRAJECTORY ATTRACTOR OF THE 3 D NAVIER – STOKES SYSTEM , 2006 .

[33]  P. Roberts,et al.  Turbulence models and plane layer dynamos , 2005 .

[34]  V. Chepyzhov,et al.  Trajectory attractor approximation of the 3D Navier-Stokes system by a Leray-α model , 2005 .

[35]  Darryl D. Holm,et al.  Computational Models of Turbulence: The LANS-α Model and the Role of Global Analysis , 2005 .

[36]  J. Marsden,et al.  The Anisotropic Lagrangian Averaged Euler and Navier-Stokes Equations , 2003 .

[37]  Edriss S. Titi,et al.  GEVREY REGULARITY FOR NONLINEAR ANALYTIC PARABOLIC EQUATIONS , 1998 .

[38]  G. Gustafson,et al.  Boundary Value Problems of Mathematical Physics , 1998 .

[39]  Roger Temam,et al.  Navier–Stokes Equations and Nonlinear Functional Analysis: Second Edition , 1995 .

[40]  Edriss S. Titi,et al.  Regularity of solutions and the convergence of the galerkin method in the ginzburg-landau equation , 1993 .

[41]  Hantaek Bae Navier-Stokes equations , 1992 .

[42]  R. Temam Navier-Stokes Equations and Nonlinear Functional Analysis , 1987 .

[43]  J. Smoller Shock Waves and Reaction-Diffusion Equations , 1983 .

[44]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[45]  J. L. Lions,et al.  Inéquations en thermoélasticité et magnétohydrodynamique , 1972 .

[46]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 2017 .

[47]  O. Oleinik Discontinuous solutions of non-linear differential equations , 1963 .

[48]  Caskey,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS I . THE BASIC EXPERIMENT , 1962 .

[49]  J. Lions Quelques résultats d'existence dans des équations aux dérivées partielles non linéaires , 1959 .