Mutation and Control of the Human Immunodeficiency Virus

We examine the dynamics of infection by the human immunodeficiency virus (HIV), as well as therapies that minimize viral load, restore adaptive immunity, and use minimal dosage of anti-HIV drugs. Virtual therapies for wild-type infections are demonstrated; however, the HIV infection is never cured, requiring continued treatment to keep the condition in remission. With high viral turnover and mutation rates, drug-resistant strains of HIV evolve quickly. The ability of optimal therapy to contain drug-resistant strains is shown to depend upon the relative fitness of mutant strains.

[1]  Patrick W Nelson,et al.  Mathematical analysis of delay differential equation models of HIV-1 infection. , 2002, Mathematical biosciences.

[2]  D. Kirschner,et al.  Predicting differential responses to structured treatment interruptions during HAART , 2004, Bulletin of mathematical biology.

[3]  C. Fraser,et al.  Quantification of intrinsic residual viral replication in treated HIV-infected patients , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[4]  R J D B,et al.  Target Cell Limited and Immune Control Models of HIV Infection : A Comparison , 1998 .

[5]  J. Mittler,et al.  Initiation of therapy during primary HIV type 1 infection results in a continuous decay of proviral DNA and a highly restricted viral evolution. , 2001, AIDS research and human retroviruses.

[6]  Alan S Perelson,et al.  Modeling the Effects of Vaccination on Chronically Infected HIV‐Positive Patients , 2002, Journal of acquired immune deficiency syndromes.

[7]  V. Jansen,et al.  The Role of T Cell Help for Anti-viral Ctl Responses , 2001 .

[8]  J Witek,et al.  Residual HIV-1 RNA in blood plasma of patients taking suppressive highly active antiretroviral therapy. , 1999, JAMA.

[9]  R. Lempicki,et al.  Impact of HIV-1 infection and highly active antiretroviral therapy on the kinetics of CD4+ and CD8+ T cell turnover in HIV-infected patients. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Grace Jordison Molecular Biology of the Gene , 1965, The Yale Journal of Biology and Medicine.

[11]  A. Perelson,et al.  Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection , 1995, Nature.

[12]  Ruy M Ribeiro,et al.  Modeling the long-term control of viremia in HIV-1 infected patients treated with antiretroviral therapy. , 2004, Mathematical biosciences.

[13]  Ryan Zurakowski,et al.  A model predictive control based scheduling method for HIV therapy. , 2006, Journal of theoretical biology.

[14]  D. Kirschner,et al.  Dynamics of co-infection with M. Tuberculosis and HIV-1. , 1999, Theoretical population biology.

[15]  M. Nowak,et al.  Specific therapy regimes could lead to long-term immunological control of HIV. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Robin A. Weiss,et al.  How does HIV cause AIDS , 1993 .

[17]  A. Perelson,et al.  Quantifying residual HIV-1 replication in patients receiving combination antiretroviral therapy. , 1999, The New England journal of medicine.

[18]  S. Rowland-Jones,et al.  HIV: Bad news for stop–start therapy? , 2002, Nature.

[19]  Tao Dong,et al.  Immune Activation and CD8+ T-Cell Differentiation towards Senescence in HIV-1 Infection , 2004, PLoS biology.

[20]  V. Jansen,et al.  The dual role of CD4 T helper cells in the infection dynamics of HIV and their importance for vaccination. , 2002, Journal of theoretical biology.

[21]  J. Bartlett,et al.  Improving HIV therapy. , 1998, Scientific American.

[22]  L N Cooper,et al.  Theory of an immune system retrovirus. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[23]  C. Castillo-Chavez Mathematical and Statistical Approaches to Aids Epidemiology , 1989 .

[24]  D. Ho,et al.  Time to hit HIV, early and hard. , 1995, The New England journal of medicine.

[25]  Luc Montagnier,et al.  A History of HIV Discovery , 2002, Science.

[26]  Yoh Iwasa,et al.  Some basic properties of immune selection. , 2004, Journal of theoretical biology.

[27]  E. Arts,et al.  HIV-1 Fitness : Implications for Drug Resistance , Disease Progression , and Global Epidemic Evolution , 2002 .

[28]  C. Benson,et al.  Viral Dynamics in Human Immunodeficiency Virus Type 1 Infection , 1995 .

[29]  Z. Grossman,et al.  HIV preferentially infects HIV-specific CD4+ T cells , 2002, Nature.

[30]  P. Ye,et al.  The effects of different HIV type 1 strains on human thymic function. , 2002, AIDS research and human retroviruses.

[31]  Glenn F. Webb,et al.  Immunotherapy of HIV-1 Infection , 1998 .

[32]  Shigui Ruan,et al.  Mathematical Biology Digital Object Identifier (DOI): , 2000 .

[33]  C. Mackay,et al.  Molecular cloning and characterization of a human eotaxin receptor expressed selectively on eosinophils , 1996, The Journal of experimental medicine.

[34]  F. Miedema,et al.  T cell dynamics in HIV-1 infection. , 1999, Advances in immunology.

[35]  C. Fox,et al.  Macrophages as a source of HIV during opportunistic infections. , 1997, Science.

[36]  John L. Sullivan,et al.  Persistence of episomal HIV-1 infection intermediates in patients on highly active anti-retroviral therapy , 2000, Nature Medicine.

[37]  Douglas D. Richman,et al.  HIV chemotherapy , 2001, Nature.

[38]  S. Lewin,et al.  Relative significance of different pathways of immune reconstitution in HIV type 1 infection as estimated by mathematical modeling. , 2001, AIDS research and human retroviruses.

[39]  D M Bortz,et al.  Estimating kinetic parameters from HIV primary infection data through the eyes of three different mathematical models. , 2006, Mathematical biosciences.

[40]  S. Rowland-Jones,et al.  Cellular immune responses to HIV , 2001, Nature.

[41]  M A Nowak,et al.  Dynamics of macrophage and T cell infection by HIV. , 1999, Journal of theoretical biology.

[42]  E. Arts,et al.  A Dual Infection/Competition Assay Shows a Correlation between Ex Vivo Human Immunodeficiency Virus Type 1 Fitness and Disease Progression , 2000, Journal of Virology.

[43]  M. Nowak,et al.  Dynamic multidrug therapies for HIV: a control theoretic approach. , 2015, Journal of theoretical biology.

[44]  R. Coombs,et al.  Virucidal effect of stimulated eosinophils on human immunodeficiency virus type 1. , 1996, AIDS research and human retroviruses.

[45]  A. Badley,et al.  Differential Effects of Interleukin-7 and Interleukin-15 on NK Cell Anti-Human Immunodeficiency Virus Activity , 2004, Journal of Virology.

[46]  Denise E. Kirschner,et al.  Revisiting Early Models of the host-pathogen interactions in HIV infection , 2000 .

[47]  P. Yeni,et al.  [Non-nucleoside reverse transcriptase inhibitors]. , 2000, Annales de medecine interne.

[48]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[49]  R. Schooley,et al.  Productive infection of T cells in lymphoid tissues during primary and early human immunodeficiency virus infection. , 2001, The Journal of infectious diseases.

[50]  A. Perelson Modeling the interaction of the immune system with HIV , 1989 .

[51]  Douglas D. Richman,et al.  HIV chemotherapy : AIDS , 2001 .

[52]  J. Kahn,et al.  Time trends in primary HIV-1 drug resistance among recently infected persons. , 2002, JAMA.

[53]  J. Batsis Clinical Pharmacology of Protease Inhibitors In HIV Infection , 2000 .

[54]  Alan S. Perelson,et al.  Decay characteristics of HIV-1-infected compartments during combination therapy , 1997, Nature.

[55]  Denise Kirschner,et al.  Dynamics of naive and memory CD4+ T lymphocytes in HIV-1 disease progression. , 2002, Journal of acquired immune deficiency syndromes.

[56]  Sonya J Snedecor,et al.  Comparison of three kinetic models of HIV-1 infection: implications for optimization of treatment. , 2003, Journal of theoretical biology.

[57]  M. Hirsch,et al.  Drug susceptibility in HIV infection after viral rebound in patients receiving indinavir-containing regimens. , 2000, JAMA.

[58]  A S Perelson,et al.  Role of the thymus in pediatric HIV-1 infection. , 1998, Journal of acquired immune deficiency syndromes and human retrovirology : official publication of the International Retrovirology Association.

[59]  Raffaele Ghigliazza,et al.  Stochastic optimal therapy for enhanced immune response. , 2004, Mathematical biosciences.

[60]  J. Kilby,et al.  Novel therapies based on mechanisms of HIV-1 cell entry. , 2003, The New England journal of medicine.

[61]  L. Montagnier,et al.  Apoptosis in AIDS. , 1993, Science.

[62]  G. Marone,et al.  Tat Protein Is an HIV-1-Encoded β-Chemokine Homolog That Promotes Migration and Up-Regulates CCR3 Expression on Human FcεRI+ Cells1 , 2000, The Journal of Immunology.

[63]  D. Kirschner,et al.  Optimal control of the chemotherapy of HIV , 1997, Journal of mathematical biology.

[64]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[65]  L. Montagnier,et al.  AIDS in 1988. , 1988, Scientific American.

[66]  M. Clerici,et al.  A strategy for prophylactic vaccination against HIV. , 1993, Science.

[67]  C. Pannecouque,et al.  Novel inhibitors of HIV-1 integration. , 2004, Current drug metabolism.

[68]  A S Perelson,et al.  Mathematical analysis of antiretroviral therapy aimed at HIV-1 eradication or maintenance of low viral loads. , 1998, Journal of theoretical biology.

[69]  M A Nowak,et al.  Pre-existence and emergence of drug resistance in HIV-1 infection. , 1997, Proceedings. Biological sciences.

[70]  Wayne C Koff,et al.  HIV vaccine design and the neutralizing antibody problem , 2004, Nature Immunology.

[71]  Denise E Kirschner,et al.  Reconstitution of thymic function in HIV-1 patients treated with highly active antiretroviral therapy. , 2003, Clinical immunology.

[72]  Guanrong Chen,et al.  Feedback control of a biodynamical model of HIV-1 , 2001, IEEE Transactions on Biomedical Engineering.

[73]  Denise E. Kirschner,et al.  Remarks on Modeling Host-Viral Dynamics and Treatment , 2001 .

[74]  Alan S. Perelson,et al.  Opportunistic infection as a cause of transient viremia in chronically infected HIV patients under treatment with HAART , 2004, Bulletin of mathematical biology.

[75]  Robert F. Stengel,et al.  Optimal control of innate immune response , 2002, Optimal Control Applications and Methods.

[76]  S. Prusiner,et al.  Discovering the Cause of AIDS , 2002, Science.

[77]  C. Boucher,et al.  Anti-CD4 therapy for AIDS suggested by mathematical models , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[78]  Robert F. Stengel,et al.  Optimal enhancement of immune response , 2002, Bioinform..

[79]  Robert F. Stengel,et al.  Optimal Control and Estimation , 1994 .

[80]  R. Gallo The Early Years of HIV/AIDS , 2002, Science.

[81]  Daniel C. Douek,et al.  The Rational Design of an AIDS Vaccine , 2006, Cell.

[82]  Alan S. Perelson,et al.  The decay of the latent reservoir of replication-competent HIV-1 is inversely correlated with the extent of residual viral replication during prolonged anti-retroviral therapy , 2000, Nature Medicine.

[83]  Alan S. Perelson,et al.  Mathematical Analysis of HIV-1 Dynamics in Vivo , 1999, SIAM Rev..

[84]  C. A. Macken,et al.  Persistence of HIV-1 transcription in peripheral-blood mononuclear cells in patients receiving potent antiretroviral therapy. , 1999, The New England journal of medicine.

[85]  A. Perelson,et al.  Dynamics of HIV infection of CD4+ T cells. , 1993, Mathematical biosciences.

[86]  R. Redfield,et al.  HIV infection: the clinical picture. , 1988, Scientific American.

[87]  Germinal Cocho,et al.  HIV-1 dynamics at different time scales under antiretroviral therapy. , 2006, Journal of theoretical biology.

[88]  M A Nowak,et al.  Virus dynamics and drug therapy. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[89]  G. Webb,et al.  A mathematical model of cell-to-cell spread of HIV-1 that includes a time delay , 2003, Journal of mathematical biology.

[90]  A. N,et al.  Dynamic Multidrug Therapies for HIV : A Control Theoretic Approach , 1997 .

[91]  Martin A. Nowak,et al.  Antigenic oscillations and shifting immunodominance in HIV-1 infections , 1995, Nature.

[92]  K. Goodkin,et al.  Dementia and the Neurovirulence of HIV-1 , 2000, CNS Spectrums.

[93]  Shuzhi Sam Ge,et al.  Nonlinear control of a dynamic model of HIV-1 , 2005, IEEE Transactions on Biomedical Engineering.

[94]  Alan S Perelson,et al.  HIV-1 infection and low steady state viral loads , 2002, Bulletin of mathematical biology.

[95]  M A Nowak,et al.  Anti-viral drug treatment: dynamics of resistance in free virus and infected cell populations. , 1997, Journal of theoretical biology.

[96]  D. Vlahov,et al.  Mortality in HIV-seropositive versus -seronegative persons in the era of highly active antiretroviral therapy: implications for when to initiate therapy. , 2004, The Journal of infectious diseases.

[97]  A. Perelson,et al.  Complex patterns of viral load decay under antiretroviral therapy: influence of pharmacokinetics and intracellular delay. , 2004, Journal of theoretical biology.

[98]  T. Beardsley In Vino Scientia , 1988 .

[99]  J. McCune,et al.  The dynamics of CD4+ T-cell depletion in HIV disease , 2001, Nature.

[100]  G. Garden Microglia in human immunodeficiency virus‐associated neurodegeneration , 2002, Glia.

[101]  P. Narciso,et al.  The Effect of Number of Mutations and of Drug-Class Sparing on Virological Response to Salvage Genotype-Guided Antiretroviral Therapy , 2002, Antiviral therapy.

[102]  David E. Martin,et al.  PA-457: A potent HIV inhibitor that disrupts core condensation by targeting a late step in Gag processing , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[103]  A. Perelson,et al.  Modeling Plasma Virus Concentration and CD4+ T Cell Kinetics during Primary HIV Infection , 1999 .

[104]  A. Perelson,et al.  HIV-1 Dynamics in Vivo: Virion Clearance Rate, Infected Cell Life-Span, and Viral Generation Time , 1996, Science.

[105]  C. Boucher,et al.  Clinical data sets of human immunodeficiency virus type 1 reverse transcriptase-resistant mutants explained by a mathematical model , 1997, Journal of virology.

[106]  D. Kirschner,et al.  A Mathematical Model of Combined Drug Therapy of HIV Infection , 1997 .

[107]  Joel E Gallant,et al.  Nucleoside and Nucleotide Analogue Reverse Transcriptase Inhibitors: A Clinical Review of Antiretroviral Resistance , 2002, Antiviral therapy.

[108]  C. Boucher,et al.  Host-parasite dynamics and outgrowth of virus containing a single K70R amino acid change in reverse transcriptase are responsible for the loss of human immunodeficiency virus type 1 RNA load suppression by zidovudine. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[109]  Howard L McLeod,et al.  Pharmacogenomics--drug disposition, drug targets, and side effects. , 2003, The New England journal of medicine.

[110]  Denise E Kirschner,et al.  Reevaluation of T Cell Receptor Excision Circles as a Measure of Human Recent Thymic Emigrants1 , 2002, The Journal of Immunology.

[111]  S. Moreno,et al.  Individualizing salvage regimens: the inhibitory quotient (Ctrough/IC50) as predictor of virological response. , 2003, AIDS.