Laplacian DCT Coefficient Models

It is well known that the distribution of the discrete cosine transform (DCT) coefficients of most natural images follow a Laplace distribution. In this note, a collection of formulas is derived for the distribution of the actual DCT coefficient. The corresponding estimation procedures are derived by the method of moments and the method of maximum likelihood. Finally, the superior performance of the derived distributions over the standard Laplace model is illustrated. It is expected that this work could serve as a useful reference and lead to improved modeling with respect to image analysis and image coding.

[1]  Y. Morikawa,et al.  Classified scalor entropy coding for information sources with elliptically symmetric probability distribution , 1999 .

[2]  Alberto Leon-Garcia,et al.  Estimation of shape parameter for generalized Gaussian distributions in subband decompositions of video , 1995, IEEE Trans. Circuits Syst. Video Technol..

[3]  Mohamed A. Deriche,et al.  A novel fingerprint image compression technique using wavelets packets and pyramid lattice vector quantization , 2002, IEEE Trans. Image Process..

[4]  Thomas S. Huang,et al.  An additive approach to transform-domain information hiding and optimum detection structure , 2001, IEEE Trans. Multim..

[5]  Jerry D. Gibson,et al.  Distributions of the Two-Dimensional DCT Coefficients for Images , 1983, IEEE Trans. Commun..

[6]  Junichi Nakayama,et al.  Generation of Random Images with Modified Laplace Distributions , 1993 .

[7]  Robert Krupinski,et al.  Approximated fast estimator for the shape parameter of generalized Gaussian distribution for a small sample size , 2015 .

[8]  Levent Onural,et al.  A class of adaptive directional image smoothing filters , 1996, Pattern Recognit..

[9]  Christophe Ambroise,et al.  Feature selection in robust clustering based on Laplace mixture , 2006, Pattern Recognit. Lett..

[11]  S. Kotz,et al.  The Standard Two-Sided Power Distribution and its Properties , 2002 .

[12]  Mohamed A. Deriche,et al.  An efficient quantization technique for wavelet coefficients of fingerprint images , 1997, Signal Process..

[13]  Akira Tanaka,et al.  Image restoration in singular observation processes based on complementary space component estimation , 2005 .

[14]  Martin Vetterli,et al.  Spatially adaptive wavelet thresholding with context modeling for image denoising , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[15]  Da-jie Liu,et al.  Probability density function and estimation for error of digitized map coordinates in GIS , 2004 .

[16]  Stefano Alliney,et al.  An algorithm for the minimization of mixed l1 and l2 norms with application to Bayesian estimation , 1994, IEEE Trans. Signal Process..

[17]  Tien D. Bui,et al.  Multivariate statistical modeling for image denoising using wavelet transforms , 2005, Signal Process. Image Commun..

[18]  W. J. Fitzgerald,et al.  Analytical approach to changepoint detection in Laplacian noise , 1995 .

[19]  Thomas S. Huang,et al.  Robust optimum detection of transform domain multiplicative watermarks , 2003, IEEE Trans. Signal Process..

[20]  Martin Vetterli,et al.  Adaptive wavelet thresholding for image denoising and compression , 2000, IEEE Trans. Image Process..

[21]  Tho Le-Ngoc,et al.  GGD model of extrinsic information with dynamic parameter assignment for turbo decoder , 2004, IEEE Transactions on Wireless Communications.

[22]  Lahouari Ghouti,et al.  Digital image watermarking using balanced multiwavelets , 2006, IEEE Transactions on Signal Processing.

[23]  Wen Gao,et al.  Statistical model, analysis and approximation of rate-distortion function in MPEG-4 FGS videos , 2005, Visual Communications and Image Processing.

[24]  Oh-Jin Kwon,et al.  Region adaptive subband image coding , 1998, IEEE Trans. Image Process..

[25]  Stella N. Batalama,et al.  On the generalized Cramer-Rao bound for the estimation of the location , 1997, IEEE Trans. Signal Process..

[26]  John W. Woods,et al.  Comment on "Estimation of shape parameter for generalized Gaussian distribution in subband decompositions of video"[with reply] , 1995, IEEE Trans. Circuits Syst. Video Technol..

[27]  Kiyohiro Shikano,et al.  Probability Distribution of Time-Series of Speech Spectral Components(Audio/Speech Coding)( Applications and Implementations of Digital Signal Processing) , 2004 .

[28]  Spyros Liapis,et al.  Color and texture image retrieval using chromaticity histograms and wavelet frames , 2004, IEEE Transactions on Multimedia.

[29]  Christophe Collet,et al.  Multiband segmentation based on a hierarchical Markov model , 2004, Pattern Recognit..

[30]  Samuel Kotz,et al.  A novel extension of the triangular distribution and its parameter estimation , 2002 .

[31]  Benjamin Belzer,et al.  A comparison of the Z, E/sub 8/, and Leech lattices for quantization of low-shape-parameter generalized Gaussian sources , 1995, IEEE Signal Processing Letters.

[32]  Han Chongzhao,et al.  Tracking of maneuvering target in glint noise environment , 2003, Sixth International Conference of Information Fusion, 2003. Proceedings of the.