A marine teleost, Opsanus beta, compensates acidosis in hypersaline water by H+ excretion or reduced HCO3− excretion rather than HCO3− uptake

[1]  C. Damsgaard,et al.  Acid-base physiology and CO2 homeostasis: Regulation and compensation in response to elevated environmental CO2 , 2019, Fish Physiology.

[2]  I. Ruiz-Jarabo,et al.  High rates of intestinal bicarbonate secretion in seawater tilapia (Oreochromis mossambicus). , 2017, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[3]  W. Warren,et al.  A proteinaceous organic matrix regulates carbonate mineral production in the marine teleost intestine , 2016, Scientific Reports.

[4]  P. Hwang,et al.  Salt secretion is linked to acid-base regulation of ionocytes in seawater-acclimated medaka: new insights into the salt-secreting mechanism , 2016, Scientific Reports.

[5]  S. Perry,et al.  The sensing of respiratory gases in fish: Mechanisms and signalling pathways , 2016, Respiratory Physiology & Neurobiology.

[6]  S. Perry,et al.  Extracellular H+ induces Ca2+ signals in respiratory chemoreceptors of zebrafish , 2015, Pflügers Archiv - European Journal of Physiology.

[7]  Y. Takei,et al.  Guanylin peptides regulate electrolyte and fluid transport in the Gulf toadfish (Opsanus beta) posterior intestine. , 2014, American journal of physiology. Regulatory, integrative and comparative physiology.

[8]  M. Tresguerres,et al.  Feeding induces translocation of vacuolar proton ATPase and pendrin to the membrane of leopard shark (Triakis semifasciata) mitochondrion-rich gill cells. , 2014, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[9]  H. Onken,et al.  Osmoregulation and excretion. , 2014, Comprehensive Physiology.

[10]  J. Horng,et al.  Proton-facilitated ammonia excretion by ionocytes of medaka (Oryzias latipes) acclimated to seawater. , 2013, American journal of physiology. Regulatory, integrative and comparative physiology.

[11]  M. Grosell,et al.  Impacts of ocean acidification on respiratory gas exchange and acid–base balance in a marine teleost, Opsanus beta , 2012, Journal of Comparative Physiology B.

[12]  R. J. González The physiology of hyper-salinity tolerance in teleost fish: a review , 2012, Journal of Comparative Physiology B.

[13]  S. Guffey,et al.  Regulation of apical H⁺-ATPase activity and intestinal HCO₃⁻ secretion in marine fish osmoregulation. , 2011, American journal of physiology. Regulatory, integrative and comparative physiology.

[14]  M. Grosell Intestinal Anion Exchange in Marine Teleosts Is Involved in Osmoregulation and Contributes to the Oceanic Inorganic Carbon Cycle , 2022 .

[15]  M. Beltramini,et al.  Cytosolic carbonic anhydrase in the Gulf toadfish is important for tolerance to hypersalinity. , 2010, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[16]  R. Wilson,et al.  Ca2+-driven intestinal HCO(3)(-) secretion and CaCO3 precipitation in the European flounder in vivo: influences on acid-base regulation and blood gas transport. , 2010, American journal of physiology. Regulatory, integrative and comparative physiology.

[17]  John E. Lewis,et al.  Zebrafish (Danio rerio) gill neuroepithelial cells are sensitive chemoreceptors for environmental CO2 , 2010, The Journal of physiology.

[18]  E. Mager,et al.  Basolateral NBCe1 plays a rate-limiting role in transepithelial intestinal HCO3– secretion, contributing to marine fish osmoregulation , 2010, Journal of Experimental Biology.

[19]  M. Grosell The role of the gastrointestinal tract in salt and water balance , 2010 .

[20]  Toby Tyrrell,et al.  Impacts of ocean acidification , 2009 .

[21]  S. Perry,et al.  The involvement of H+-ATPase and carbonic anhydrase in intestinal HCO3– secretion in seawater-acclimated rainbow trout , 2009, Journal of Experimental Biology.

[22]  E. Mager,et al.  High rates of HCO3– secretion and Cl– absorption against adverse gradients in the marine teleost intestine: the involvement of an electrogenic anion exchanger and H+-pump metabolon? , 2009, Journal of Experimental Biology.

[23]  H. Pörtner,et al.  Acclimation of ion regulatory capacities in gills of marine fish under environmental hypercapnia. , 2008, American journal of physiology. Regulatory, integrative and comparative physiology.

[24]  M. Grosell,et al.  Effects of salinity on intestinal bicarbonate secretion and compensatory regulation of acid–base balance in Opsanus beta , 2008, Journal of Experimental Biology.

[25]  C. Wood,et al.  A critical analysis of transepithelial potential in intact killifish (Fundulus heteroclitus) subjected to acute and chronic changes in salinity , 2008, Journal of Comparative Physiology B.

[26]  A. Kato,et al.  Identification of intestinal bicarbonate transporters involved in formation of carbonate precipitates to stimulate water absorption in marine teleost fish , 2008, American journal of physiology. Regulatory, integrative and comparative physiology.

[27]  M. Grosell,et al.  Intestinal anion exchange in teleost water balance. , 2007, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[28]  Jonathan M. Wilson,et al.  Modulation of branchial ion transport protein expression by salinity in glass eels (Anguilla anguilla L.) , 2007 .

[29]  C. Kelble,et al.  Salinity patterns of Florida Bay , 2007 .

[30]  S. Perry,et al.  Acid–base balance and CO2 excretion in fish: Unanswered questions and emerging models , 2006, Respiratory Physiology & Neurobiology.

[31]  Jennie M. Burns,et al.  Na+/H+ antiporter, V-H+-ATPase and Na+/K+-ATPase immunolocalization in a marine teleost (Myoxocephalus octodecemspinosus) , 2006, Journal of Experimental Biology.

[32]  M. Grosell Intestinal anion exchange in marine fish osmoregulation , 2006, Journal of Experimental Biology.

[33]  G. Goss,et al.  Microtubule-dependent relocation of branchial V-H+-ATPase to the basolateral membrane in the Pacific spiny dogfish (Squalus acanthias): a role in base secretion , 2006, Journal of Experimental Biology.

[34]  J. Kunkel,et al.  Proton pump-rich cell secretes acid in skin of zebrafish larvae. , 2006, American journal of physiology. Cell physiology.

[35]  S. Perry,et al.  Cytoplasmic carbonic anhydrase isozymes in rainbow trout Oncorhynchus mykiss: comparative physiology and molecular evolution , 2005, Journal of Experimental Biology.

[36]  K. Choe,et al.  The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. , 2005, Physiological reviews.

[37]  M. Romero,et al.  The SLC26 gene family of multifunctional anion exchangers , 2004, Pflügers Archiv.

[38]  J. Pennec,et al.  Effects of direct transfer from freshwater to seawater on respiratory and circulatory variables and acid-base status in rainbow trout , 1991, Journal of Comparative Physiology B.

[39]  F. Eddy,et al.  Ionic and respiratory regulation in rainbow trout during rapid transfer to seawater , 1979, Journal of comparative physiology.

[40]  R. Wilson,et al.  Intestinal bicarbonate secretion in marine teleost fish-source of bicarbonate, pH sensitivity, and consequences for whole animal acid-base and calcium homeostasis. , 2003, Biochimica et biophysica acta.

[41]  Jonathan M. Wilson,et al.  Intestinal bicarbonate secretion by marine teleost fish--why and how? , 2002, Biochimica et biophysica acta.

[42]  A. Morrison-Shetlar,et al.  Acid-base regulation in fishes: cellular and molecular mechanisms. , 2002, The Journal of experimental zoology.

[43]  S. Perry,et al.  Nitrogen Excretion and the Cardiorespiratory Physiology of the Gulf Toadfish, Opsanus beta , 1998, Physiological Zoology.

[44]  J. Sørensen,et al.  Proton pump activity of mitochondria-rich cells. The interpretation of external proton-concentration gradients. , 1997 .

[45]  N. Willumsen,et al.  Role of proton pump of mitochondria‐rich cells for active transport of chloride ions in toad skin epithelium. , 1992, The Journal of physiology.

[46]  D. Randall,et al.  Evidence for the Presence of an Electrogenic Proton Pump on the Trout Gill Epithelium , 1991 .

[47]  G. Nonnotte,et al.  Time course of extracellular acid-base adjustments under hypo- or hyperosmotic conditions in the euryhaline fish Platichthys flesus , 1990 .

[48]  B. Mcmahon,et al.  Responses of a Stenohaline Freshwater Teleost (Catostomus Commersoni) to Hypersaline Exposure: II. Transepithelial Flux of Sodium, Chloride and ‘Acidic Equivalents’ , 1986 .

[49]  S. Perry,et al.  Blood ionic and acid–base status in rainbow trout (Salmo gairdneri) following rapid transfer from freshwater to seawater: effect of pseudobranch denervation , 1981 .

[50]  D. Randall,et al.  Regulation of arterial pH during fresh water to sea water transfer in the rainbow trout Salmo gairdneri. , 1976, Comparative biochemistry and physiology. A, Comparative physiology.

[51]  Thomas D. Schmittgen,et al.  Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2 2 DD C T Method , 2022 .