Advancing simulations of biological materials: applications of coarse-grained models on graphics processing unit hardware

The timescales of biological processes, primarily those inherent to the molecular mechanisms of disease, are long (>μs) and involve complex interactions of systems consisting of many atoms (>106). Simulating these systems requires an advanced computational approach, and as such, coarse-grained (CG) models have been developed and highly optimised for accelerator hardware, primarily graphics processing units (GPUs). In this review, I discuss the implementation of CG models for biologically relevant systems, and show how such models can be optimised and perform well on GPU-accelerated hardware. Several examples of GPU implementations of CG models for both molecular dynamics and Monte Carlo simulations on purely GPU and hybrid CPU/GPU architectures are presented. Both the hardware and algorithmic limitations of various models, which depend greatly on the application of interest, are discussed.

[1]  Wataru Shinoda,et al.  Large-Scale Molecular Dynamics Simulations of Self-Assembling Systems , 2008, Science.

[2]  Sharon C. Glotzer,et al.  Rigid body constraints realized in massively-parallel molecular dynamics on graphics processing units , 2011, Comput. Phys. Commun..

[3]  W Michael Brown,et al.  A Case Study of Truncated Electrostatics for Simulation of Polyelectrolyte Brushes on GPU Accelerators. , 2013, Journal of chemical theory and computation.

[4]  M J Harvey,et al.  ACEMD: Accelerating Biomolecular Dynamics in the Microsecond Time Scale. , 2009, Journal of chemical theory and computation.

[5]  J. Carrillo,et al.  Interaction between brush layers of bottle-brush polyelectrolytes: molecular dynamics simulations. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[6]  John D. Weeks,et al.  ROLES OF REPULSIVE AND ATTRACTIVE FORCES IN DETERMINING THE STRUCTURE OF NONUNIFORM LIQUIDS : GENERALIZED MEAN FIELD THEORY , 1998 .

[7]  Gianni De Fabritiis,et al.  Induced Effects of Sodium Ions on Dopaminergic G-Protein Coupled Receptors , 2010, PLoS Comput. Biol..

[8]  W S Klug,et al.  Nanoindentation studies of full and empty viral capsids and the effects of capsid protein mutations on elasticity and strength. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Sharon C. Glotzer,et al.  Pseudo-random number generation for Brownian Dynamics and Dissipative Particle Dynamics simulations on GPU devices , 2011, J. Comput. Phys..

[10]  R. Dror,et al.  How Fast-Folding Proteins Fold , 2011, Science.

[11]  A. Travesset,et al.  Design of polymer nanocomposites in solution by polymer functionalization. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  John L. Gustafson,et al.  Reevaluating Amdahl's law , 1988, CACM.

[13]  A. Mark,et al.  Coarse grained model for semiquantitative lipid simulations , 2004 .

[14]  S. Phillpot,et al.  Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r−1 summation , 1999 .

[15]  Hayder Amin,et al.  Membrane protein sequestering by ionic protein-lipid interactions , 2011, Nature.

[16]  Alexander D. MacKerell,et al.  Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. , 2010, The journal of physical chemistry. B.

[17]  Valeria Molinero,et al.  Structural transformation in supercooled water controls the crystallization rate of ice , 2011, Nature.

[18]  Duncan Poole,et al.  Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald. , 2013, Journal of chemical theory and computation.

[19]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[20]  Diwakar Shukla,et al.  OpenMM 4: A Reusable, Extensible, Hardware Independent Library for High Performance Molecular Simulation. , 2013, Journal of chemical theory and computation.

[21]  J. S. Hansen,et al.  Simplistic Coulomb forces in molecular dynamics: comparing the Wolf and shifted-force approximations. , 2011, The journal of physical chemistry. B.

[22]  Gianni De Fabritiis,et al.  Swan: A tool for porting CUDA programs to OpenCL , 2011, Comput. Phys. Commun..

[23]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[24]  Wataru Shinoda,et al.  Coarse-grained molecular modeling of non-ionic surfactant self-assembly , 2008 .

[25]  Miguel Fuentes-Cabrera,et al.  An Evaluation of Molecular Dynamics Performance on the Hybrid Cray XK6 Supercomputer , 2012, ICCS.

[26]  K. Schulten,et al.  Maturation of high-density lipoproteins , 2009, Journal of The Royal Society Interface.

[27]  José Mario Martínez,et al.  PACKMOL: A package for building initial configurations for molecular dynamics simulations , 2009, J. Comput. Chem..

[28]  V Barsegov,et al.  Sop‐GPU: Accelerating biomolecular simulations in the centisecond timescale using graphics processors , 2010, Proteins.

[29]  J. Corkill,et al.  Thermodynamics of micellization of non-ionic detergents , 1964 .

[30]  Jack J. Dongarra,et al.  From CUDA to OpenCL: Towards a performance-portable solution for multi-platform GPU programming , 2012, Parallel Comput..

[31]  Andreas W. Götz,et al.  SPFP: Speed without compromise - A mixed precision model for GPU accelerated molecular dynamics simulations , 2013, Comput. Phys. Commun..

[32]  K. Dill,et al.  The Protein-Folding Problem, 50 Years On , 2012, Science.

[33]  Steven J. Plimpton,et al.  Implementing molecular dynamics on hybrid high performance computers - Particle-particle particle-mesh , 2012, Comput. Phys. Commun..

[34]  J. Sokoloff,et al.  Comparison of the kinetic friction of planar neutral and polyelectrolyte polymer brushes using molecular dynamics simulations. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  D. Frenkel Speed-up of Monte Carlo simulations by sampling of rejected states. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[36]  R. Hockney,et al.  Quiet high resolution computer models of a plasma , 1974 .

[37]  Michael L Klein,et al.  Nanoparticle Shape Improves Delivery: Rational Coarse Grain Molecular Dynamics (rcg-md) of Taxol in Worm-like Peg-pcl Micelles 2 , 2022 .

[38]  P. Debenedetti,et al.  Computer Simulation of Water Sorption on Flexible Protein Crystals. , 2012, The journal of physical chemistry letters.

[39]  Ross C. Walker,et al.  An overview of the Amber biomolecular simulation package , 2013 .

[40]  Helgi I Ingólfsson,et al.  The power of coarse graining in biomolecular simulations , 2013, Wiley interdisciplinary reviews. Computational molecular science.

[41]  M. Klein,et al.  Exploring the utility of coarse-grained water models for computational studies of interfacial systems , 2010 .

[42]  B. Chait,et al.  The structure of the potassium channel: molecular basis of K+ conduction and selectivity. , 1998, Science.

[43]  R. Altman,et al.  Cloud-based simulations on Google Exacycle reveal ligand-modulation of GPCR activation pathways , 2013, Nature chemistry.

[44]  John E. Johnson,et al.  Structures of the native and swollen forms of cowpea chlorotic mottle virus determined by X-ray crystallography and cryo-electron microscopy. , 1995, Structure.

[45]  Klaus Schulten,et al.  Adapting a message-driven parallel application to GPU-accelerated clusters , 2008, 2008 SC - International Conference for High Performance Computing, Networking, Storage and Analysis.

[46]  William J. Dally,et al.  Energy-efficient mechanisms for managing thread context in throughput processors , 2011, 2011 38th Annual International Symposium on Computer Architecture (ISCA).

[47]  David N. LeBard,et al.  Self-assembly of coarse-grained ionic surfactants accelerated by graphics processing units , 2012 .

[48]  M J Harvey,et al.  An Implementation of the Smooth Particle Mesh Ewald Method on GPU Hardware. , 2009, Journal of chemical theory and computation.

[49]  Gregory A Voth,et al.  Multiscale modeling of biomolecular systems: in serial and in parallel. , 2007, Current opinion in structural biology.

[50]  Gregory A Voth,et al.  Multiscale simulation of transmembrane proteins. , 2007, Journal of structural biology.

[51]  Wataru Shinoda,et al.  Zwitterionic lipid assemblies: molecular dynamics studies of monolayers, bilayers, and vesicles using a new coarse grain force field. , 2010, The journal of physical chemistry. B.

[52]  D. Yee,et al.  Principles of protein folding — A perspective from simple exact models , 1995, Protein science : a publication of the Protein Society.

[53]  Dennis E. Discher,et al.  Filomicelles in nanomedicine - from flexible, fragmentable, and ligand-targetable drug carrier designs to combination therapy for brain tumors. , 2013, Journal of materials chemistry. B.

[54]  David A. Kofke,et al.  Appropriate methods to combine forward and reverse free-energy perturbation averages , 2003 .

[55]  E. Ruoslahti,et al.  Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. , 1998, Science.

[56]  W. R. Lieb,et al.  Mechanisms of general anesthesia. , 1990, Environmental health perspectives.

[57]  Klaus Schulten,et al.  GPU-accelerated molecular modeling coming of age. , 2010, Journal of molecular graphics & modelling.

[58]  Xavier Periole,et al.  Combining an Elastic Network With a Coarse-Grained Molecular Force Field: Structure, Dynamics, and Intermolecular Recognition. , 2009, Journal of chemical theory and computation.

[59]  Michael Engel,et al.  Massively parallel Monte Carlo for many-particle simulations on GPUs , 2012, J. Comput. Phys..

[60]  A. Panagiotopoulos,et al.  Implicit solvent models for micellization of ionic surfactants. , 2008, The journal of physical chemistry. B.

[61]  Sharon M. Loverde,et al.  Curvature-driven molecular demixing in the budding and breakup of mixed component Worm-like Micelles. , 2010, Soft matter.

[62]  Vijay S. Pande,et al.  Screen Savers of the World Unite! , 2000, Science.

[63]  G. Semenza Targeting HIF-1 for cancer therapy , 2003, Nature Reviews Cancer.

[64]  M. Klein,et al.  Paramaterization of a coarse-grained model for linear alkylbenzene sulfonate surfactants and molecular dynamics studies of their self-assembly in aqueous solution , 2010 .

[65]  Pablo G. Debenedetti,et al.  Massively parallel chemical potential calculation on graphics processing units , 2012, Comput. Phys. Commun..

[66]  Duncan Poole,et al.  Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born , 2012, Journal of chemical theory and computation.

[67]  Sharon C Glotzer,et al.  Hard-disk equation of state: first-order liquid-hexatic transition in two dimensions with three simulation methods. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[68]  G. de Fabritiis,et al.  Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations , 2011, Proceedings of the National Academy of Sciences.

[69]  C. Ronchi,et al.  An efficient method for computation of long-ranged Coulomb forces in computer simulation of ionic fluids , 2003 .

[70]  Clare McCabe,et al.  Coarse-grained molecular models of water: a review , 2012, Molecular simulation.

[71]  John E. Johnson,et al.  An unexpected twist in viral capsid maturation , 2009, Nature.

[72]  Mauricio Carrillo-Tripp,et al.  VIPERdb2: an enhanced and web API enabled relational database for structural virology , 2008, Nucleic Acids Res..

[73]  Valentina Tozzini,et al.  Coarse-grained models for proteins. , 2005, Current opinion in structural biology.

[74]  Berend Smit,et al.  Molecular Monte Carlo Simulations Using Graphics Processing Units: To Waste Recycle or Not? , 2011, Journal of chemical theory and computation.

[75]  Charles H. Bennett,et al.  Efficient estimation of free energy differences from Monte Carlo data , 1976 .

[76]  R. Nussinov,et al.  The role of dynamic conformational ensembles in biomolecular recognition. , 2009, Nature chemical biology.

[77]  Haruki Nakamura,et al.  Free Energy Landscapes of Alanine Dipeptide in Explicit Water Reproduced by the Force-Switching Wolf Method. , 2011, Journal of chemical theory and computation.

[78]  K Y Sanbonmatsu,et al.  High performance computing in biology: multimillion atom simulations of nanoscale systems. , 2007, Journal of structural biology.

[79]  Siewert J. Marrink,et al.  Release of content through mechano-sensitive gates in pressurized liposomes , 2010, Proceedings of the National Academy of Sciences.

[80]  Joshua A. Anderson,et al.  General purpose molecular dynamics simulations fully implemented on graphics processing units , 2008, J. Comput. Phys..

[81]  G. Wuite,et al.  Bacteriophage capsids: tough nanoshells with complex elastic properties. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[82]  J. D. Gezelter,et al.  Is the Ewald summation still necessary? Pairwise alternatives to the accepted standard for long-range electrostatics. , 2006, The Journal of chemical physics.

[83]  R. Jernigan,et al.  Self‐consistent estimation of inter‐residue protein contact energies based on an equilibrium mixture approximation of residues , 1999, Proteins.

[84]  David P. Anderson,et al.  High-Throughput All-Atom Molecular Dynamics Simulations Using Distributed Computing , 2010, J. Chem. Inf. Model..

[85]  David N. LeBard,et al.  Premicelles and monomer exchange in aqueous surfactant solutions above and below the critical micelle concentration , 2012 .

[86]  Wataru Shinoda,et al.  Micellization Studied by GPU-Accelerated Coarse-Grained Molecular Dynamics. , 2011, Journal of chemical theory and computation.

[87]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[88]  J. Ruppersberg Ion Channels in Excitable Membranes , 1996 .

[89]  Berk Hess,et al.  GROMACS—the road ahead , 2011 .

[90]  Valeria Molinero,et al.  Water modeled as an intermediate element between carbon and silicon. , 2009, The journal of physical chemistry. B.

[91]  Peng Wang,et al.  Implementing molecular dynamics on hybrid high performance computers - short range forces , 2011, Comput. Phys. Commun..

[92]  Michael L. Klein,et al.  Coarse grain models and the computer simulation of soft materials , 2004 .

[93]  Bernard R Brooks,et al.  Isotropic periodic sum: a method for the calculation of long-range interactions. , 2005, The Journal of chemical physics.

[94]  Wataru Shinoda,et al.  Multi-property fitting and parameterization of a coarse grained model for aqueous surfactants , 2007 .

[95]  D. Tieleman,et al.  The MARTINI force field: coarse grained model for biomolecular simulations. , 2007, The journal of physical chemistry. B.

[96]  Rastko Sknepnek,et al.  A Graphics Processing Unit Implementation of Coulomb Interaction in Molecular Dynamics. , 2010, Journal of chemical theory and computation.

[97]  Vijay S. Pande,et al.  Efficient nonbonded interactions for molecular dynamics on a graphics processing unit , 2010, J. Comput. Chem..

[98]  Broughton,et al.  Self-consistent treatment of repulsive and attractive forces in nonuniform liquids. , 1995, Physical review letters.

[99]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[100]  Peter Beike,et al.  Intermolecular And Surface Forces , 2016 .

[101]  Michael W. Deem,et al.  Strict detailed balance is unnecessary in Monte Carlo simulation , 1999 .

[102]  Peter T Cummings,et al.  Probing the Statistical Validity of the Ductile-to-Brittle Transition in Metallic Nanowires Using GPU Computing. , 2013, Journal of chemical theory and computation.

[103]  W G Noid,et al.  Perspective: Coarse-grained models for biomolecular systems. , 2013, The Journal of chemical physics.

[104]  Andrey V Dobrynin,et al.  Friction between brush layers of charged and neutral bottle-brush macromolecules. molecular dynamics simulations. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[105]  Vijay S. Pande,et al.  Accelerating molecular dynamic simulation on graphics processing units , 2009, J. Comput. Chem..

[106]  M. Klein,et al.  Implicit-solvent models for micellization: nonionic surfactants and temperature-dependent properties. , 2011, The journal of physical chemistry. B.

[107]  Shingo Iwami,et al.  Quantification of viral infection dynamics in animal experiments , 2013, Front. Microbiol..

[108]  Joshua A. Anderson,et al.  Micellar crystals in solution from molecular dynamics simulations. , 2008, The Journal of chemical physics.

[109]  A. Zhmurov,et al.  Generation of random numbers on graphics processors: forced indentation in silico of the bacteriophage HK97. , 2011, The journal of physical chemistry. B.

[110]  Jianpeng Ma,et al.  CHARMM: The biomolecular simulation program , 2009, J. Comput. Chem..

[111]  A. Panagiotopoulos,et al.  Atomistic simulations of micellization of sodium hexyl, heptyl, octyl, and nonyl sulfates. , 2012, The journal of physical chemistry. B.

[112]  Ron O. Dror,et al.  Mechanism of Voltage Gating in Potassium Channels , 2012, Science.

[113]  Olga Kononova,et al.  Structural transitions and energy landscape for Cowpea Chlorotic Mottle Virus capsid mechanics from nanomanipulation in vitro and in silico. , 2013, Biophysical journal.

[114]  Clare McCabe,et al.  On the investigation of coarse-grained models for water: balancing computational efficiency and the retention of structural properties. , 2010, The journal of physical chemistry. B.

[115]  Gerhard Hummer,et al.  Coarse-grained models for simulations of multiprotein complexes: application to ubiquitin binding. , 2008, Journal of molecular biology.

[116]  Klaus Schulten,et al.  Four-scale description of membrane sculpting by BAR domains. , 2008, Biophysical journal.

[117]  C. H. Walker The Hydrophobic Effect: Formation of Micelles and Biological Membranes , 1981 .

[118]  Klaus Schulten,et al.  Accelerating Molecular Modeling Applications with GPU Computing , 2009 .

[119]  F. Noé,et al.  Transition networks for modeling the kinetics of conformational change in macromolecules. , 2008, Current opinion in structural biology.

[120]  G. de Fabritiis,et al.  Explicit solvent dynamics and energetics of HIV‐1 protease flap opening and closing , 2010, Proteins.

[121]  Andrew Sewell,et al.  Structural and kinetic basis for heightened immunogenicity of T cell vaccines , 2005, The Journal of experimental medicine.

[122]  M. Klein,et al.  Coarse-grained force field for ionic surfactants , 2011 .

[123]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[124]  John E. Stone,et al.  Fast analysis of molecular dynamics trajectories with graphics processing units - Radial distribution function histogramming , 2011, J. Comput. Phys..

[125]  James Gain,et al.  Simulation of Coarse-Grained Protein-Protein Interactions with Graphics Processing Units. , 2010, Journal of chemical theory and computation.

[126]  Haruki Nakamura,et al.  Non-Ewald methods: theory and applications to molecular systems , 2012, Biophysical Reviews.

[127]  B. Widom,et al.  Some Topics in the Theory of Fluids , 1963 .

[128]  Jihan Kim,et al.  Efficient Monte Carlo Simulations of Gas Molecules Inside Porous Materials. , 2012, Journal of chemical theory and computation.

[129]  André E. X. Brown,et al.  Mechanism of fibrin(ogen) forced unfolding. , 2011, Structure.

[130]  Alex Travesset,et al.  Folding and stability of helical bundle proteins from coarse‐grained models , 2013, Proteins.

[131]  R. Sknepnek,et al.  Electrostatic-Driven Ridge Formation on Nanoparticles Coated with Charged End-Group Ligands , 2011 .

[132]  David N. LeBard,et al.  Surfactant concentration effects on micellar properties. , 2012, The journal of physical chemistry. B.