Verification of band offsets and electron effective masses in GaAsN/GaAs quantum wells: Spectroscopic experiment versus 10-band k·p modeling

Optical transitions in GaAs1−xNx/GaAs quantum wells (QWs) have been probed by two complementary techniques, modulation spectroscopy in a form of photoreflectance and surface photovoltage spectroscopy. Transition energies in QWs of various widths and N contents have been compared with the results of band structure calculations based on the 10-band k·p Hamiltonian. Due to the observation of higher order transitions in the measured spectra, the band gap discontinuities at the GaAsN/GaAs interface and the electron effective masses could be determined, both treated as semi-free parameters to get the best matching between the theoretical and experimental energies. We have obtained the chemical conduction band offset values of 86% for x = 1.2% and 83% for x = 2.2%, respectively. For these determined band offsets, the electron effective masses equal to about 0.09 mo in QWs with 1.2% N and 0.15 mo for the case of larger N content of 2.2%.

[1]  M. Kamp,et al.  On the oscillator strength in dilute nitride quantum wells on GaAs , 2012 .

[2]  R. Goldman,et al.  Nitrogen composition dependence of electron effective mass in GaAs1-xNx , 2010 .

[3]  G. Sȩk,et al.  Band Offsets and Photoluminescence Thermal Quenching in Mid-Infrared Emitting GaInAsSb Quantum Wells with Quinary AlGaInAsSb Barriers , 2010 .

[4]  J. Misiewicz,et al.  Photoreflectance and contactless electroreflectance measurements of semiconductor structures by using bright and dark configurations. , 2009, The Review of scientific instruments.

[5]  H. Hsu,et al.  Optical studies of type-I GaAs1−xSbx/GaAs multiple quantum well structures , 2009 .

[6]  S. Höfling,et al.  Influence of arsenic flux on the annealing properties of GaInNAs quantum wells for long wavelength laser applications around 1.6 μm , 2009 .

[7]  Yoshitaka Okada,et al.  Strain-compensated InAs/GaNAs quantum dots for use in high-efficiency solar cells , 2008 .

[8]  A. Forchel,et al.  Photoreflectance and photoluminescence study of Ga0.76In0.24Sb/GaSb single quantum wells: Band structure and thermal quenching of photoluminescence , 2008 .

[9]  A. Fiore,et al.  On the modulation mechanisms in photoreflectance of an ensemble of self-assembled InAs/GaAs quantum dots , 2006 .

[10]  Ludovic Largeau,et al.  Quantum-well saturable absorber at 1.55μm on GaAs substrate with a fast recombination rate , 2006 .

[11]  J. Misiewicz,et al.  Contactless electroreflectance of GaNyAs1−y/GaAs multi quantum wells: The conduction band offset and electron effective mass issues , 2006 .

[12]  S. T. Ng,et al.  Comparison of electronic band structure and optical transparency conditions of InxGa1−xAs1−yNy∕GaAs quantum wells calculated by 10-band, 8-band, and 6-band k∙p models , 2005 .

[13]  J. Łusakowski,et al.  The electron effective mass at the bottom of the GaNAs conduction band , 2004 .

[14]  S. Tomić,et al.  Influence of conduction-band nonparabolicity on electron confinement and effective mass in GaNxAs1−x∕GaAs quantum wells , 2004 .

[15]  G. Sȩk,et al.  Photoreflectance investigations of oscillator strength and broadening of optical transitions for GaAsSb–GaInAs/GaAs bilayer quantum wells , 2004 .

[16]  A. Forchel,et al.  Comparison of GaInNAs laser diodes based on two to five quantum wells , 2004, IEEE Journal of Quantum Electronics.

[17]  Nelson Tansu,et al.  Low-threshold 1317-nm InGaAsN quantum-well lasers with GaAsN barriers , 2003 .

[18]  S. Tomić,et al.  Theoretical and experimental analysis of 1.3-/spl mu/m InGaAsN/GaAs lasers , 2003 .

[19]  Shih-Chang Lee,et al.  Electrooptical properties of GaNAs/GaAs multiple quantum well structures , 2003 .

[20]  Joel W. Ager,et al.  Current status of research and development of III–N–V semiconductor alloys , 2002 .

[21]  S. G. Spruytte,et al.  Admittance dispersion of n-type GaAs/Ga(As, N)/GaAs heterostructures grown by molecular beam epitaxy , 2001 .

[22]  E. Haller,et al.  Effect of band anticrossing on the optical transitions in GaAs1-xNx/GaAs multiple quantum wells , 2001 .

[23]  B. Arora,et al.  Electroreflectance and surface photovoltage spectroscopies of semiconductor structures using an indium-tin-oxide-coated glass electrode in soft contact mode , 2001 .

[24]  I. Buyanova,et al.  Type I band alignment in the GaN x As 1-x /GaAs quantum wells , 2000 .

[25]  Shailendra Kumar,et al.  Bound exciton effect and carrier escape mechanisms in temperature-dependent surface photovoltage spectroscopy of a single quantum well , 2000 .

[26]  I. Buyanova,et al.  Direct determination of electron effective mass in GaNAs/GaAs quantum wells , 2000 .

[27]  C. Tu,et al.  Formation of an impurity band and its quantum confinement in heavily doped GaAs:N , 2000 .

[28]  A. Forchel,et al.  Photoreflectance spectroscopy of coupled InxGa1−xAs/GaAs quantum wells , 2000 .

[29]  K. Uomi,et al.  Analysis of Band Offset in GaNAs/GaAs by X-Ray Photoelectron Spectroscopy , 1999 .

[30]  J. W. Thomas Numerical Partial Differential Equations , 1999 .

[31]  Su-Huai Wei,et al.  Composition dependence of interband transition intensities in GaPN, GaAsN, and GaPAs alloys , 1997 .

[32]  L. Kronik,et al.  Surface photovoltage spectroscopy of quantum wells and superlattices , 1996 .

[33]  Wei,et al.  Giant and composition-dependent optical bowing coefficient in GaAsN alloys. , 1996, Physical review letters.

[34]  Shiro Sakai,et al.  Band Gap Energy and Band Lineup of III-V Alloy Semiconductors Incorporating Nitrogen and Boron , 1993 .

[35]  Markus Weyers,et al.  Red Shift of Photoluminescence and Absorption in Dilute GaAsN Alloy Layers , 1992 .

[36]  J. Misiewicz,et al.  Electromodulation spectroscopy in midinfrared spectral region: The band offset study for GaSb-based quantum wells , 2009 .