Non-polynomial Third Order Equations which Pass the Painlevé Test
暂无分享,去创建一个
[1] N. A. Kudryashov. Two hierarchies of ordinary differential equations and their properties , 1999 .
[2] F. Bureau,et al. Differential equations with fixed critical points , 1964 .
[3] U. Muğan,et al. Painlevé test and the first Painlevé hierarchy , 1999 .
[4] B. Gambier,et al. Sur les équations différentielles du second ordre et du premier degré dont l'intégrale générale est a points critiques fixes , 1910 .
[5] P. Clarkson,et al. Bäcklund transformations for the second Painlevé hierarchy: a modified truncation approach , 1998, solv-int/9811014.
[6] P. Painlevé,et al. Mémoire sur les équations différentielles dont l'intégrale générale est uniforme , 1900 .
[7] N. A. Kudryashov. Some Fourth-Order Ordinary Differential Equations which Pass the Painlevé Test , 2001 .
[8] Andrew Pickering,et al. Coalescence limits for higher order Painlevé equations , 2002 .
[9] Nicolai A. Kudryashov,et al. The first and second Painlevé equations of higher order and some relations between them , 1997 .
[10] E. L. Ince. Ordinary differential equations , 1927 .
[11] N. A. Kudryashov. TRANSCENDENTS DEFINED BY NONLINEAR FOURTH-ORDER ORDINARY DIFFERENTIAL EQUATIONS , 1999 .
[12] M. Ablowitz,et al. Nonlinear evolution equations and ordinary differential equations of painlevè type , 1978 .
[13] Christopher M. Cosgrove,et al. Higher‐Order Painlevé Equations in the Polynomial Class II: Bureau Symbol P1 , 2006 .
[14] C. Cosgrove. Chazy Classes IX–XI Of Third‐Order Differential Equations , 2000 .
[15] A. V. Kitaev. Caustics in 1+1 integrable systems , 1994 .
[16] Fahd Jrad,et al. Painlevé Test and Higher Order Differential Equations , 2002, nlin/0301043.
[17] M. Ablowitz,et al. A connection between nonlinear evolution equations and ordinary differential equations of P‐type. II , 1980 .
[18] Nikolai A. Kudryashov,et al. Fourth-order analogies to the Painlevé equations , 2002 .
[19] Ericka Stricklin-Parker,et al. Ann , 2005 .
[20] J. Chazy,et al. Sur les équations différentielles du troisième ordre et d'ordre supérieur dont l'intégrale générale a ses points critiques fixes , 1911 .