Non-polynomial Third Order Equations which Pass the Painlevé Test

The singular point analysis of third-order ordinary differential equations in the non-polynomial class is presented. Some new third order ordinary differential equations which pass the Painlevé test, as well as the known ones are found.

[1]  N. A. Kudryashov Two hierarchies of ordinary differential equations and their properties , 1999 .

[2]  F. Bureau,et al.  Differential equations with fixed critical points , 1964 .

[3]  U. Muğan,et al.  Painlevé test and the first Painlevé hierarchy , 1999 .

[4]  B. Gambier,et al.  Sur les équations différentielles du second ordre et du premier degré dont l'intégrale générale est a points critiques fixes , 1910 .

[5]  P. Clarkson,et al.  Bäcklund transformations for the second Painlevé hierarchy: a modified truncation approach , 1998, solv-int/9811014.

[6]  P. Painlevé,et al.  Mémoire sur les équations différentielles dont l'intégrale générale est uniforme , 1900 .

[7]  N. A. Kudryashov Some Fourth-Order Ordinary Differential Equations which Pass the Painlevé Test , 2001 .

[8]  Andrew Pickering,et al.  Coalescence limits for higher order Painlevé equations , 2002 .

[9]  Nicolai A. Kudryashov,et al.  The first and second Painlevé equations of higher order and some relations between them , 1997 .

[10]  E. L. Ince Ordinary differential equations , 1927 .

[11]  N. A. Kudryashov TRANSCENDENTS DEFINED BY NONLINEAR FOURTH-ORDER ORDINARY DIFFERENTIAL EQUATIONS , 1999 .

[12]  M. Ablowitz,et al.  Nonlinear evolution equations and ordinary differential equations of painlevè type , 1978 .

[13]  Christopher M. Cosgrove,et al.  Higher‐Order Painlevé Equations in the Polynomial Class II: Bureau Symbol P1 , 2006 .

[14]  C. Cosgrove Chazy Classes IX–XI Of Third‐Order Differential Equations , 2000 .

[15]  A. V. Kitaev Caustics in 1+1 integrable systems , 1994 .

[16]  Fahd Jrad,et al.  Painlevé Test and Higher Order Differential Equations , 2002, nlin/0301043.

[17]  M. Ablowitz,et al.  A connection between nonlinear evolution equations and ordinary differential equations of P‐type. II , 1980 .

[18]  Nikolai A. Kudryashov,et al.  Fourth-order analogies to the Painlevé equations , 2002 .

[19]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[20]  J. Chazy,et al.  Sur les équations différentielles du troisième ordre et d'ordre supérieur dont l'intégrale générale a ses points critiques fixes , 1911 .