Observation of the Goos-Hänchen shift in graphene via weak measurements

We report the observation of the Goos-Hanchen effect in graphene via a weak value amplification scheme. We demonstrate that the amplified Goos-Hanchen shift in weak measurements is sensitive to the variation of graphene layers. Combining the Goos-Hanchen effect with weak measurements may provide important applications in characterizing the parameters of graphene.

[1]  Stevenson,et al.  The sense in which a "weak measurement" of a spin-(1/2 particle's spin component yields a value 100. , 1989, Physical review. D, Particles and fields.

[2]  Onur Hosten,et al.  Observation of the Spin Hall Effect of Light via Weak Measurements , 2008, Science.

[3]  P. Panigrahi,et al.  Optimized weak measurements of Goos-Hänchen and Imbert-Fedorov shifts in partial reflection. , 2016, Optics express.

[4]  Jianguo Tian,et al.  Experimental observation of a giant Goos-Hänchen shift in graphene using a beam splitter scanning method. , 2014, Optics letters.

[5]  V. Kravets,et al.  Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption , 2010, 1003.2618.

[6]  C. Imbert,et al.  Calculation and Experimental Proof of the Transverse Shift Induced by Total Internal Reflection of a Circularly Polarized Light Beam , 1972 .

[7]  A. Neto,et al.  Making graphene visible , 2007, Applied Physics Letters.

[8]  Shuangchun Wen,et al.  Identifying graphene layers via spin Hall effect of light , 2012, 1208.1168.

[9]  Mark R. Dennis,et al.  Eigenpolarizations for giant transverse optical beam shifts. , 2014, Physical review letters.

[10]  Qihuang Gong,et al.  Measurement of spin Hall effect of reflected light. , 2009, Optics letters.

[11]  Q. Gong,et al.  Spin Hall effect of light reflected from a magnetic thin film , 2012 .

[12]  Ling-Jun Kong,et al.  Spin Hall effect of reflected light from an air-glass interface around the Brewster’s angle , 2012 .

[13]  T. Ebbesen,et al.  Weak measurements of light chirality with a plasmonic slit. , 2012, Physical review letters.

[14]  David J. Starling,et al.  Ultrasensitive beam deflection measurement via interferometric weak value amplification. , 2009, Physical review letters.

[15]  F. Goos,et al.  Ein neuer und fundamentaler Versuch zur Totalreflexion , 1947 .

[16]  Shuangchun Wen,et al.  Modified weak measurements for the detection of the photonic spin Hall effect , 2015 .

[17]  S. Wen,et al.  Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements , 2011, 1112.4560.

[18]  Reflection beamshifts of visible light due to graphene , 2015, 1504.04946.

[19]  Sylvain Girard,et al.  Simple technique for measuring the Goos-Hänchen effect with polarization modulation and a position-sensitive detector. , 2002, Optics letters.

[20]  Aaron Matthews,et al.  Experimental studies of the internal Goos-Hanchen shift for self-collimated beams in two-dimensional microwave photonic crystals , 2008, 0808.1607.

[21]  Andrew G. Glen,et al.  APPL , 2001 .

[22]  S. A. Carvalho,et al.  Weak measurement of the composite Goos-Hänchen shift in the critical region. , 2016, Optics letters.

[23]  Qingtian Zhang,et al.  A spin beam splitter in graphene through the Goos–Hänchen shift , 2014 .

[24]  이기복 18 , 2000, Testament d'un patriote exécuté.

[25]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[26]  M. Jalil,et al.  Theory of giant Faraday rotation and Goos-Hänchen shift in graphene , 2011 .

[27]  Lambertus Hesselink,et al.  Goos-Hänchen shift surface plasmon resonance sensor , 2006 .

[28]  Nicholas X. Fang,et al.  Large positive and negative lateral optical beam displacements due to surface plasmon resonance , 2004 .

[29]  Rong Chen,et al.  Giant and tunable Goos–Hanchen shifts for attenuated total reflection structure containing graphene , 2014 .

[30]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[31]  M. Merano,et al.  Optical beam shifts in graphene and single-layer boron-nitride. , 2016, Optics letters.

[32]  F. Xia,et al.  Tunable infrared plasmonic devices using graphene/insulator stacks. , 2012, Nature nanotechnology.

[33]  M. Merano Fresnel coefficients of a two-dimensional atomic crystal , 2015, 1509.04136.

[34]  F. Fedorov To the theory of total reflection , 2013 .

[35]  A. Aiello,et al.  Goos–Hänchen and Imbert–Fedorov shifts from a quantum-mechanical perspective , 2013, 1307.6057.

[36]  J. P. Woerdman,et al.  Observation of Goos-Hänchen shifts in metallic reflection. , 2007, Optics express.

[37]  Shanhui Fan,et al.  Bends and splitters for self-collimated beams in photonic crystals , 2003 .

[38]  Goos–Hänchen and Imbert–Fedorov beam shifts: an overview , 2012, 1210.8236.

[39]  C. Conti,et al.  Goos-Hänchen and Imbert-Fedorov shifts for paraxial X-waves. , 2014, Optics letters.

[40]  J. P. Woerdman,et al.  Role of beam propagation in Goos-Hänchen and Imbert-Fedorov shifts. , 2008, Optics letters.

[41]  Zach DeVito,et al.  Opt , 2017 .

[42]  Mark R. Dennis,et al.  The analogy between optical beam shifts and quantum weak measurements , 2012, 1204.0327.

[43]  Yu Song,et al.  Giant Goos-Hänchen shift in graphene double-barrier structures , 2012, 1208.2395.

[44]  De-Kui Qing,et al.  Goos-Hänchen shifts at the interfaces between left- and right-handed media. , 2004, Optics letters.

[45]  이광수,et al.  15 , 2019, Tao te Ching.

[46]  Weak measurement of the Goos-Hänchen shift , 2013, CLEO: 2013.

[47]  A. Jordan,et al.  Colloquium : Understanding quantum weak values: Basics and applications , 2013, 1305.7154.

[48]  Stefano Borini,et al.  Optical constants of graphene layers in the visible range , 2009 .

[49]  Sailing He,et al.  Giant negative Goos-Hänchen shifts for a photonic crystal with a negative effective index. , 2006, Optics express.

[50]  Franco Nori,et al.  Nonperturbative theory of weak pre-and post-selected measurements , 2011, 1109.6315.

[51]  H. Lai,et al.  Large and negative Goos-Hänchen shift near the Brewster dip on reflection from weakly absorbing media. , 2002, Optics letters.

[52]  G. Jayaswal,et al.  Observing angular deviations in light-beam reflection via weak measurements. , 2014, Optics letters.

[53]  A. Szameit,et al.  Goos-Hänchen and Imbert-Fedorov shifts for Gaussian beams impinging on graphene-coated surfaces. , 2015, Optics express.

[54]  Vaidman,et al.  How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. , 1988, Physical review letters.