Analysis, Design, and $X$-Band Implementation of a Self-Biased Active Feedback $G_{m}$ -Boosted Common-Gate CMOS LNA

This paper explores the use of active feedback to boost the transconductance of a common-gate (CG) low-noise amplifier and achieve simultaneous low noise and input power match. Unlike transformer coupled topologies, the CG input stage is dc-coupled to a self-biased common-source feedback amplifier (for gm boosting), thus eliminating the need of external bias circuitry. Noise and intermodulation analysis with and without gm boosting are extensively studied yielding closed-form expressions of the noise figure (NF) and third-order input-referred intercept point (IIP3) that are useful for circuit design and optimization. A 9.6-GHz differential prototype implemented in a 0.18-mum technology using only NMOS transistors, achieves a minimum NF of 4 dB, an IIP3 of -11.3 dBm, a return loss of -17 dB, and a transducer gain of 18 dB while dissipating 10 m (excluding buffer circuit) from a 1.8-V supply voltage. The active chip area is 0.11 mum2.

[1]  D.B.M. Klaassen,et al.  Accurate thermal noise model for deep-submicron CMOS , 1999, International Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318).

[2]  A.A. Abidi,et al.  Noise in RF-CMOS mixers: a simple physical model , 2000, IEEE Journal of Solid-State Circuits.

[3]  B. Razavi,et al.  A 60-GHz CMOS receiver front-end , 2006, IEEE Journal of Solid-State Circuits.

[4]  D. J. Allstot,et al.  -Boosted Common-Gate LNA and Differential , 2005 .

[5]  Yue Ping Zhang,et al.  A 1.5-V 2–9.6-GHz Inductorless Low-Noise Amplifier in 0.13-$\mu{\hbox {m}} $ CMOS , 2007, IEEE Transactions on Microwave Theory and Techniques.

[6]  Bedrich J. Hosticka Improvement of the gain of MOS amplifiers , 1979 .

[7]  D.J. Allstot,et al.  A g/sub m/-Boosted Current-Reuse LNA in 0.18/spl mu/m CMOS , 2007, 2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium.

[8]  Xiang Guan,et al.  A 24-GHz CMOS front-end , 2004, IEEE Journal of Solid-State Circuits.

[9]  D. J. Cassan,et al.  A 1-V transformer-feedback low-noise amplifier for 5-GHz wireless LAN in 0.18-μm CMOS , 2003, IEEE J. Solid State Circuits.

[10]  Heng Zhang,et al.  A Noise Reduction and Linearity Improvement Technique for a Differential Cascode LNA , 2008, IEEE Journal of Solid-State Circuits.

[11]  M. J. Deen,et al.  Channel noise modeling of deep submicron MOSFETs , 2002 .

[12]  T. P. Chen A simple technique to determine barrier height change in gate oxide caused by electrical stress , 2002 .

[13]  David J. Allstot,et al.  A capacitor cross-coupled common-gate low-noise amplifier , 2005, IEEE Transactions on Circuits and Systems II: Express Briefs.

[14]  A.A. Abidi,et al.  Power-conscious design of wireless circuits and systems , 2000, Proceedings of the IEEE.

[15]  G. Geelen,et al.  A fast-settling CMOS op amp for SC circuits with 90-dB DC gain , 1990 .

[16]  A.A. Abidi,et al.  A 4.5-mW 900-MHz CMOS receiver for wireless paging , 2000, IEEE Journal of Solid-State Circuits.

[17]  Ezz I. El-Masry,et al.  A fast settling CMOS operational amplifier , 2003, Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS '03..

[18]  Chih-Hung Chen,et al.  Design of the Input Matching Network of RF CMOS LNAs for Low-Power Operation , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[19]  T. Lee,et al.  A 1.5 V, 1.5 GHz CMOS low noise amplifier , 1996 .

[20]  Ali M. Niknejad,et al.  X/Ku Band CMOS LNA Design Techniques , 2006, IEEE Custom Integrated Circuits Conference 2006.

[21]  Mourad N. El-Gamal,et al.  Distortion in RF CMOS short channel low noise amplifiers , 2005 .

[22]  D.J. Allstot,et al.  G/sub m/-boosted common-gate LNA and differential colpitts VCO/QVCO in 0.18-/spl mu/m CMOS , 2005, IEEE Journal of Solid-State Circuits.

[23]  M. Deen,et al.  Extraction of the induced gate noise, channel noise, and their correlation in submicron MOSFETs from RF noise measurements , 2001 .