Quantum Partial Information Decomposition

The Partial Information Decomposition (PID) takes one step beyond Shannon's theory in decomposing the information two variables $A,B$ possess about a third variable $T$ into distinct parts: unique, shared (or redundant) and synergistic information. Here we show how these concepts can be defined in a quantum setting. We apply a quantum PID to scrambling in quantum many-body systems, for which a quantum-theoretic description has been proven productive. Unique information in particular provides a finer description of scrambling than does the so-called tri-information.

[1]  S. J. Enk Pooling Probability Distributions and the Partial Information Decomposition , 2023, 2302.02251.

[2]  S. Kais,et al.  Imaginary components of out-of-time-order correlator and information scrambling for navigating the learning landscape of a quantum machine learning model , 2022, Physical Review Research.

[3]  Samantha P. Sherrill,et al.  Revealing the Dynamics of Neural Information Processing with Multivariate Information Decomposition , 2022, Entropy.

[4]  T. Roughgarden,et al.  No-Regret Learning with Unbounded Losses: The Case of Logarithmic Pooling , 2022, ArXiv.

[5]  W. Zurek,et al.  Redundantly Amplified Information Suppresses Quantum Correlations in Many-Body Systems. , 2022, Physical review letters.

[6]  Shenglong Xu,et al.  Scrambling Dynamics and Out-of-Time Ordered Correlators in Quantum Many-Body Systems: a Tutorial , 2022, 2202.07060.

[7]  L. Bastos,et al.  Bayesian Inference for the Weights in Logarithmic Pooling , 2022, Bayesian Analysis.

[8]  Enrico Amico,et al.  The physics of higher-order interactions in complex systems , 2021, Nature Physics.

[9]  Jonah Kudler-Flam,et al.  Information Scrambling with Conservation Laws , 2021, SciPost Physics.

[10]  H. Tajima,et al.  Universal limitation of quantum information recovery: symmetry versus coherence , 2021, 2103.01876.

[11]  Nathan Wiebe,et al.  Entanglement Induced Barren Plateaus , 2020, PRX Quantum.

[12]  Sebastian Deffner,et al.  Quantum scrambling and the growth of mutual information , 2020, Quantum Science and Technology.

[13]  Indranil Chakrabarty,et al.  Witnessing negative conditional entropy , 2020, Physical Review A.

[14]  Borzoo Rassouli,et al.  An operational information decomposition via synergistic disclosure , 2020, Journal of Physics A: Mathematical and Theoretical.

[15]  Huitao Shen,et al.  Information Scrambling in Quantum Neural Networks , 2019, Physical review letters.

[16]  Artemy Kolchinsky A Novel Approach to the Partial Information Decomposition , 2019, Entropy.

[17]  Michael Gastpar,et al.  Quantifying High-order Interdependencies via Multivariate Extensions of the Mutual Information , 2019, Physical review. E.

[18]  James P. Crutchfield,et al.  Unique Information and Secret Key Agreement , 2018, Entropy.

[19]  W. Zurek,et al.  Revealing the Emergence of Classicality Using Nitrogen-Vacancy Centers. , 2018, Physical review letters.

[20]  Peter Zoller,et al.  Probing Rényi entanglement entropy via randomized measurements , 2018, Science.

[21]  John Watrous,et al.  The Theory of Quantum Information , 2018 .

[22]  Joseph T. Lizier,et al.  Information Decomposition of Target Effects from Multi-Source Interactions: Perspectives on Previous, Current and Future Work , 2018, Entropy.

[23]  Joseph T. Lizier,et al.  Pointwise Partial Information DecompositionUsing the Specificity and Ambiguity Lattices , 2018, Entropy.

[24]  Viola Priesemann,et al.  Quantifying Information Modification in Developing Neural Networks via Partial Information Decomposition , 2017, Entropy.

[25]  Murray Shanahan,et al.  The Partial Information Decomposition of Generative Neural Network Models , 2017, Entropy.

[26]  T. Sagawa,et al.  Scrambling of quantum information in quantum many-body systems , 2017, 1704.04850.

[27]  U. Sen,et al.  Monogamy of Quantum Correlations - A Review , 2016, 1610.01069.

[28]  Nicolai Friis,et al.  Geometry of two-qubit states with negative conditional entropy , 2016, 1609.04144.

[29]  James P. Crutchfield,et al.  Multivariate Dependence Beyond Shannon Information , 2016, Entropy.

[30]  Dawei Ding,et al.  Conditional mutual information of bipartite unitaries and scrambling , 2016, Journal of High Energy Physics.

[31]  Robin A. A. Ince Measuring multivariate redundant information with pointwise common change in surprisal , 2016, Entropy.

[32]  Daniel A. Roberts,et al.  Chaos in quantum channels , 2015, 1511.04021.

[33]  Jim Kay,et al.  Partial information decomposition as a unified approach to the specification of neural goal functions , 2015, Brain and Cognition.

[34]  Eckehard Olbrich,et al.  Quantifying unique information , 2013, Entropy.

[35]  Michael Zwolak,et al.  Complementarity of quantum discord and classically accessible information , 2013, Scientific Reports.

[36]  Christoph Salge,et al.  A Bivariate Measure of Redundant Information , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  Christof Koch,et al.  Quantifying synergistic mutual information , 2012, ArXiv.

[38]  S. J. van Enk,et al.  Measuring Trρn on single copies of ρ using random measurements. , 2012, Physical review letters.

[39]  M. S. Leifer,et al.  A Bayesian approach to compatibility, improvement, and pooling of quantum states , 2011, 1110.1085.

[40]  R. Spekkens,et al.  Towards a formulation of quantum theory as a causally neutral theory of Bayesian inference , 2011, 1107.5849.

[41]  Randall D. Beer,et al.  Nonnegative Decomposition of Multivariate Information , 2010, ArXiv.

[42]  P. Hayden,et al.  Black holes as mirrors: Quantum information in random subsystems , 2007, 0708.4025.

[43]  Zhengmin Zhang,et al.  Probabilistic interpretation of the reduction criterion for entanglement , 2007 .

[44]  Yichao Ou,et al.  Cover , 2006, Brain and Development.

[45]  R. Karandikar,et al.  Sankhyā, The Indian Journal of Statistics , 2006 .

[46]  P. Latham,et al.  Synergy, Redundancy, and Independence in Population Codes, Revisited , 2005, The Journal of Neuroscience.

[47]  Michael J. Berry,et al.  Synergy, Redundancy, and Independence in Population Codes , 2003, The Journal of Neuroscience.

[48]  W. Zurek,et al.  Quantum discord: a measure of the quantumness of correlations. , 2001, Physical review letters.

[49]  A. Raftery,et al.  Inference for Deterministic Simulation Models: The Bayesian Melding Approach , 2000 .

[50]  William Bialek,et al.  Synergy in a Neural Code , 2000, Neural Computation.

[51]  C. Adami,et al.  Quantum extension of conditional probability , 1999 .

[52]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[53]  C. Adami,et al.  Negative entropy and information in quantum mechanics , 1995, quant-ph/9512022.

[54]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[55]  Niels C. Lind,et al.  Pooling Expert Opinions on Probability Distributions , 1988 .

[56]  W. J. McGill Multivariate information transmission , 1954, Trans. IRE Prof. Group Inf. Theory.

[57]  G. Crooks On Measures of Entropy and Information , 2015 .

[58]  S. Camalet-N. Canosa,et al.  Computing quantum discord is NP-complete , 2013, ArXiv.

[59]  W. Hart in Two Variables , 2011 .

[60]  T. Paul,et al.  Quantum computation and quantum information , 2001, SOEN.

[61]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[62]  Masahito Hayashi Quantum Information Theory , 2017 .

[63]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .