Electrical charge state identification and control for the silicon vacancy in 4H-SiC

Reliable single-photon emission is crucial for realizing efficient spin-photon entanglement and scalable quantum information systems. The silicon vacancy ($${V}_{{\rm{Si}}}$$VSi) in 4H-SiC is a promising single-photon emitter exhibiting millisecond spin coherence times, but suffers from low photon counts, and only one charge state retains the desired spin and optical properties. Here, we demonstrate that emission from $${V}_{{\rm{Si}}}$$VSi defect ensembles can be enhanced by an order of magnitude via fabrication of Schottky barrier diodes, and sequentially modulated by almost $$50 \%$$50% via application of external bias. Furthermore, we identify charge state transitions of $${V}_{{\rm{Si}}}$$VSi by correlating optical and electrical measurements, and realize selective population of the bright state. Finally, we reveal a pronounced Stark shift of 55 GHz for the V1′ emission line state of $${V}_{{\rm{Si}}}$$VSi at larger electric fields, providing a means to modify the single-photon emission. The approach presented herein paves the way towards obtaining complete control of, and drastically enhanced emission from, $${V}_{{\rm{Si}}}$$VSi defect ensembles in 4H-SiC highly suitable for quantum applications.

[1]  J. Stark,et al.  Beobachtungen ber den Effekt des elektrischen Feldes auf Spektrallinien. I. Quereffekt , 1914 .

[2]  A. Stoneham Theory of defects in solids , 1979 .

[3]  A. Stoneham Theory of Defects in Solids: Electronic Structure of Defects in Insulators and Semiconductors , 1976 .

[4]  E. Bringuier Impact excitation in ZnS‐type electroluminescence , 1991 .

[5]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[6]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[7]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[8]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[9]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[10]  E. Janzén,et al.  Electronic structure of the neutral silicon vacancy in 4H and 6H SiC , 2000 .

[11]  T. Frauenheim,et al.  Metastability of the Neutral Silicon Vacancy in 4H-SiC , 2000 .

[12]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[13]  A. Hallén,et al.  Annealing study of a bistable defect in proton-implanted n-type 4H-SiC , 2003 .

[14]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[15]  A. Hallén,et al.  Electrically active defects in irradiated 4H-SiC , 2004 .

[16]  A. Henry,et al.  Deep levels created by low energy electron irradiation in 4H-SiC , 2004 .

[17]  B. Svensson,et al.  Annealing behavior between room temperature and 2000 °C of deep level defects in electron-irradiated n-type 4H silicon carbide , 2005 .

[18]  A. Hallén,et al.  Defect energy levels in hydrogen-implanted and electron-irradiated n-type 4H silicon carbide , 2005 .

[19]  P Hemmer,et al.  Stark shift control of single optical centers in diamond. , 2006, Physical Review Letters.

[20]  A. Galeckas,et al.  Fundamental band edge absorption in nominally undoped and doped 4H‐SiC , 2007 .

[21]  J. Ziegler,et al.  SRIM – The stopping and range of ions in matter (2010) , 2010 .

[22]  C. Freysoldt,et al.  Fully ab initio finite-size corrections for charged-defect supercell calculations. , 2009, Physical review letters.

[23]  E. Janzén,et al.  The Silicon Vacancy in SiC , 2009 .

[24]  L. Jiang,et al.  Quantum entanglement between an optical photon and a solid-state spin qubit , 2010, Nature.

[25]  D. D. Awschalom,et al.  Quantum computing with defects , 2010, Proceedings of the National Academy of Sciences.

[26]  Bob B. Buckley,et al.  Room temperature coherent control of defect spin qubits in silicon carbide , 2011, Nature.

[27]  Á. Gali,et al.  Large-Scale Electronic Structure Calculations of Vacancies in 4H-SiC Using the Heyd-Scuseria-Ernzerhof Screened Hybrid Density Functional , 2011, 1105.3079.

[28]  Alfredo Pasquarello,et al.  Finite-size supercell correction schemes for charged defect calculations , 2012 .

[29]  E Janzén,et al.  Negative-U system of carbon vacancy in 4H-SiC. , 2012, Physical review letters.

[30]  T. Umeda,et al.  A room temperature single photon source in silicon carbide , 2013, CLEO: 2013.

[31]  Neil B. Manson,et al.  The nitrogen-vacancy colour centre in diamond , 2013, 1302.3288.

[32]  G. Kresse,et al.  First-principles calculations for point defects in solids , 2014 .

[33]  M. Curty,et al.  Secure quantum key distribution , 2014, Nature Photonics.

[34]  F. Oba,et al.  Electrostatics-based finite-size corrections for first-principles point defect calculations , 2014, 1402.1226.

[35]  G. Astakhov,et al.  Room-temperature quantum microwave emitters based on spin defects in silicon carbide , 2013, Nature Physics.

[36]  N. Iwamoto,et al.  Point Defects in Silicon Carbide , 2015 .

[37]  Nan Zhao,et al.  Coherent control of single spins in silicon carbide at room temperature. , 2014, Nature Materials.

[38]  Takeshi Ohshima,et al.  Isolated electron spins in silicon carbide with millisecond coherence times. , 2014, Nature materials.

[39]  Juan Miguel Arrazola,et al.  Experimental quantum fingerprinting with weak coherent pulses , 2015, Nature Communications.

[40]  N. T. Son,et al.  Vector Magnetometry Using Silicon Vacancies in 4 H -SiC Under Ambient Conditions , 2016, 1606.01301.

[41]  W. E. Meyer,et al.  Electrical characterization of deep levels created by bombarding nitrogen-doped 4H-SiC with alpha-particle irradiation , 2016 .

[42]  T. Ohshima,et al.  Locking of electron spin coherence above 20 ms in natural silicon carbide , 2016, 1602.05775.

[43]  Cristian Bonato,et al.  Quantum properties of dichroic silicon vacancies in silicon carbide , 2017, 1707.02715.

[44]  David O. Bracher,et al.  Selective Purcell enhancement of two closely linked zero-phonon transitions of a silicon carbide color center , 2016, Proceedings of the National Academy of Sciences.

[45]  Stark Tuning and Electrical Charge State Control of Single Divacancies in Silicon Carbide , 2017, 1710.10705.

[46]  N. T. Son,et al.  Identification of Si-vacancy related room-temperature qubits in 4 H silicon carbide , 2017, 1708.06259.

[47]  E. Janzén,et al.  Scalable quantum photonics with single color centers in silicon carbide , 2016, 2017 Conference on Lasers and Electro-Optics (CLEO).

[48]  D. Golter,et al.  Optical switching of defect charge states in 4H-SiC , 2017, Scientific Reports.

[49]  Guanzhong Wang,et al.  Efficient Generation of an Array of Single Silicon-Vacancy Defects in Silicon Carbide , 2016, 1610.03978.

[50]  F. J. Heremans,et al.  Optical charge state control of spin defects in 4H-SiC , 2017, Nature Communications.

[51]  B. Johnson,et al.  A review on single photon sources in silicon carbide , 2017, Reports on progress in physics. Physical Society.

[52]  T. Ohshima,et al.  Double negatively charged carbon vacancy at the h- and k-sites in 4H-SiC: Combined Laplace-DLTS and DFT study , 2018 .

[53]  T. Ohshima,et al.  Room Temperature Electrical Control of Single Photon Sources at 4H-SiC Surface , 2018 .

[54]  D. Awschalom,et al.  Electrometry by optical charge conversion of deep defects in 4H-SiC , 2018, Proceedings of the National Academy of Sciences.

[55]  E. Janzén,et al.  Diffusion of the Carbon Vacancy in a-Cut and c-Cut n-Type 4H-SiС , 2018, Materials Science Forum.

[56]  N. T. Son,et al.  Identification and tunable optical coherent control of transition-metal spins in silicon carbide , 2018, npj Quantum Information.

[57]  Peter C. Humphreys,et al.  Deterministic delivery of remote entanglement on a quantum network , 2017, Nature.

[58]  B. Monserrat,et al.  Defect identification based on first-principles calculations for deep level transient spectroscopy , 2018, Applied Physics Letters.

[59]  N. T. Son,et al.  High-fidelity spin and optical control of single silicon-vacancy centres in silicon carbide , 2018, Nature Communications.

[60]  Y. Frodason,et al.  Negative-Uand polaronic behavior of the Zn-O divacancy in ZnO , 2019, Physical Review B.

[61]  N. T. Son,et al.  Electrical and optical control of single spins integrated in scalable semiconductor devices , 2019, Science.

[62]  N. T. Son,et al.  Coherent electrical readout of defect spins in silicon carbide by photo-ionization at ambient conditions , 2019, Nature Communications.

[63]  N. T. Son,et al.  Electrical charge state manipulation of single silicon vacancies in a silicon carbide quantum optoelectronic device. , 2019, Nano letters.