Aspartic proteases of Plasmodium falciparum and other parasitic protozoa as drug targets.

All parasitic protozoa contain multiple proteases, some of which are attracting attention as drug targets. Aspartic proteases are already the targets of some clinically useful drugs (e.g. chemotherapy of HIV infection) and a variety of factors make these enzymes appealing to those seeking novel antiparasite therapies. This review provides a critical analysis of the current knowledge on Plasmodium aspartic proteases termed plasmepsins, proposes a definitive nomenclature for this group of enzymes, and compares these enzymes with aspartic proteases of humans and other parasitic protozoa. The present status of attempts to obtain specific inhibitors of the parasite enzymes that will be useful as drugs is outlined and suggestions for future research priorities are proposed.

[1]  W. H. Mager,et al.  Gastric chief cell-specific transcription of the pepsinogen A gene. , 1993, European journal of biochemistry.

[2]  I. Gluzman,et al.  Kinetic analysis of plasmepsins I and II aspartic proteases of the Plasmodium falciparum digestive vacuole. , 1996, Molecular and biochemical parasitology.

[3]  R E Cachau,et al.  Structure and inhibition of plasmepsin II, a hemoglobin-degrading enzyme from Plasmodium falciparum. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[4]  D. Goldberg,et al.  Biosynthesis and Maturation of the Malaria Aspartic Hemoglobinases Plasmepsins I and II* , 1997, The Journal of Biological Chemistry.

[5]  U. Certa,et al.  Expression and characterisation of plasmepsin I from Plasmodium falciparum. , 1997, European journal of biochemistry.

[6]  A. Tomasselli,et al.  Targeting the HIV-protease in AIDS therapy: a current clinical perspective. , 2000, Biochimica et biophysica acta.

[7]  D. Bur,et al.  The aspartic proteinase from the rodent parasite Plasmodium berghei as a potential model for plasmepsins from the human malaria parasite, Plasmodium falciparum , 1999, FEBS letters.

[8]  M. Citron,et al.  Expression Analysis of BACE2 in Brain and Peripheral Tissues* , 2000, The Journal of Biological Chemistry.

[9]  D. Fairlie,et al.  Proteolysis of human hemoglobin by schistosome cathepsin D. , 2001, Molecular and biochemical parasitology.

[10]  G. H. Coombs,et al.  Parasite proteinases and amino acid metabolism: possibilities for chemotherapeutic exploitation , 1997, Parasitology.

[11]  R. Wilson,et al.  Effects of foetal haemoglobin on susceptibility of red cells to Plasmodium falciparum , 1977, Nature.

[12]  A Wlodawer,et al.  Inhibitors of HIV-1 protease: a major success of structure-assisted drug design. , 1998, Annual review of biophysics and biomolecular structure.

[13]  Ashutosh Kumar Singh,et al.  Characterization of Native and Recombinant Falcipain-2, a Principal Trophozoite Cysteine Protease and Essential Hemoglobinase ofPlasmodium falciparum * , 2000, The Journal of Biological Chemistry.

[14]  J. Treanor,et al.  Beta-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. , 1999, Science.

[15]  P. Brindley,et al.  Acasp, a gene encoding a cathepsin D-like aspartic protease from the hookworm Ancylostoma caninum. , 1996, Biochemical and biophysical research communications.

[16]  I. Gluzman,et al.  Molecular characterization and inhibition of a Plasmodium falciparum aspartic hemoglobinase. , 1994, The EMBO journal.

[17]  P. Rosenthal,et al.  Proteases of protozoan parasites. , 1999, Advances in parasitology.

[18]  J. Sealey,et al.  Prorenin and renin as separate mediators of tissue and circulating systems. , 1989, American journal of hypertension.

[19]  I. Gluzman,et al.  Order and specificity of the Plasmodium falciparum hemoglobin degradation pathway. , 1994, The Journal of clinical investigation.

[20]  C. Bourdieu,et al.  Cloning and characterization of an Eimeria acervulina sporozoite gene homologous to aspartyl proteinases. , 1993, Molecular and biochemical parasitology.

[21]  Neil D. Rawlings,et al.  Handbook of proteolytic enzymes , 1998 .

[22]  B. Dunn,et al.  The two sides of enzyme-substrate specificity: lessons from the aspartic proteinases. , 2000, Biochimica et biophysica acta.

[23]  A. Loukas,et al.  Gulliver, a long terminal repeat retrotransposon from the genome of the oriental blood fluke Schistosoma japonicum. , 2001, Gene.

[24]  I. Gluzman,et al.  Naturally‐occurring and recombinant forms of the aspartic proteinases plasmepsins I and II from the human malaria parasite Plasmodium f alciparum , 1999, FEBS letters.

[25]  G. Stamatoyannopoulos,et al.  Transgenic mice expressing human fetal globin are protected from malaria by a novel mechanism. , 1998, Blood.

[26]  D. Goldberg,et al.  Identification and Characterization of Falcilysin, a Metallopeptidase Involved in Hemoglobin Catabolism within the Malaria Parasite Plasmodium falciparum* , 1999, The Journal of Biological Chemistry.

[27]  U. Certa,et al.  A distinct member of the aspartic proteinase gene family from the human malaria parasite Plasmodium falciparum , 1999, FEBS letters.

[28]  D. Knox,et al.  Expression of Haemonchus contortus pepsinogen in Caenorhabditis elegans. , 2001, Molecular and biochemical parasitology.

[29]  P. Rosenthal,et al.  Antimalarial Synergy of Cysteine and Aspartic Protease Inhibitors , 1998, Antimicrobial Agents and Chemotherapy.

[30]  J. Kay,et al.  Napsins: new human aspartic proteinases , 1998, FEBS letters.

[31]  Howard L. Saft,et al.  Active site specificity of plasmepsin II , 1999, Protein science : a publication of the Protein Society.

[32]  C. Peters,et al.  Mice deficient for the lysosomal proteinase cathepsin D exhibit progressive atrophy of the intestinal mucosa and profound destruction of lymphoid cells. , 1995, The EMBO journal.

[33]  B. Dunn,et al.  High level expression and characterisation of Plasmepsin II, an aspartic proteinase from Plasmodium falciparum , 1994, FEBS letters.

[34]  J. Grosclaude,et al.  Differential localisation of an Eimeria tenella aspartyl proteinase during the infection process. , 2000, International journal for parasitology.

[35]  G. Klebe,et al.  Inhibitors of aspartic proteases in human diseases: molecular modeling comes of age. , 1999, Die Pharmazie.

[36]  D. Sullivan,et al.  Hemoglobin metabolism in the malaria parasite Plasmodium falciparum. , 1997, Annual review of microbiology.

[37]  D. Miller,et al.  Preliminary characterisation of an Onchocerca volvulus aspartic protease. , 1997, International journal for parasitology.

[38]  I D Kuntz,et al.  Potent, low-molecular-weight non-peptide inhibitors of malarial aspartyl protease plasmepsin II. , 1999, Journal of medicinal chemistry.

[39]  I. Gluzman,et al.  Generation of hemoglobin peptides in the acidic digestive vacuole of Plasmodium falciparum implicates peptide transport in amino acid production. , 1997, Molecular and biochemical parasitology.

[40]  A. Fairlamb,et al.  Substrate interactions between trypanothione reductase and N1-glutathionylspermidine disulphide at 0.28-nm resolution. , 1993, European journal of biochemistry.

[41]  F. Winkler,et al.  Renin inhibition by substituted piperidines: a novel paradigm for the inhibition of monomeric aspartic proteinases? , 1999, Chemistry & biology.