The accomplishment of the Engineering Design Activities of IFMIF/EVEDA: The European–Japanese project towards a Li(d,xn) fusion relevant neutron source

The International Fusion Materials Irradiation Facility (IFMIF), presently in its Engineering Validation and Engineering Design Activities (EVEDA) phase under the frame of the Broader Approach Agreement between Europe and Japan, accomplished in summer 2013, on schedule, its EDA phase with the release of the engineering design report of the IFMIF plant, which is here described. Many improvements of the design from former phases are implemented, particularly a reduction of beam losses and operational costs thanks to the superconducting accelerator concept, the re-location of the quench tank outside the test cell (TC) with a reduction of tritium inventory and a simplification on its replacement in case of failure, the separation of the irradiation modules from the shielding block gaining irradiation flexibility and enhancement of the remote handling equipment reliability and cost reduction, and the water cooling of the liner and biological shielding of the TC, enhancing the efficiency and economy of the related sub-systems. In addition, the maintenance strategy has been modified to allow a shorter yearly stop of the irradiation operations and a more careful management of the irradiated samples. The design of the IFMIF plant is intimately linked with the EVA phase carried out since the entry into force of IFMIF/EVEDA in June 2007. These last activities and their on-going accomplishment have been thoroughly described elsewhere (Knaster J et al [19]), which, combined with the present paper, allows a clear understanding of the maturity of the European–Japanese international efforts. This released IFMIF Intermediate Engineering Design Report (IIEDR), which could be complemented if required concurrently with the outcome of the on-going EVA, will allow decision making on its construction and/or serve as the basis for the definition of the next step, aligned with the evolving needs of our fusion community.

Enric Bargalló | Jose Manuel Arroyo | Javier Abal | R. Gobin | Ivan Podadera | N. Casal | Eiichi Wakai | Maria Teresa Porfiri | Masayoshi Sugimoto | Andrea Pisent | M. Comunian | F. Groeschel | D. Uriot | O. Delferriere | Ulrich Fischer | Mizuho Ida | V. Massaut | D. Perez | J. M. Carmona | Martin Mittwollen | Frederik Arbeiter | R. Heidinger | G. Pruneri | Kazuhiro Watanabe | Fernando Mota | Pascal Garin | David Rapisarda | Willem Leysen | Juan Knaster | Angel Ibarra | A. García | Philippe Gouat | Takehiko Yokomine | Concepcion Oliver | N. Chauvin | T. Pinna | Ali Abou-Sena | D. Bernardi | M. Soldaini | Y. Le Tonqueze | Gioacchino Miccichè | Francisco Ogando | V. Queral | M. Weber | M. Yamamoto | H. Matsumoto | S. Ohira | K. Kondo | J. Theile | F. Orsini | F. Arranz | P-Y. Beauvais | A. Delgado | P. Diaz-Arocas | M. Frisoni | T. Kikuchi | T. Kubo | A. Mas | J. C. Mora | P.A.P. Nghiem | F. S. Nitti | K. Nishiyama | M. Pérez | R. Román | M. Shingala | K. Tian | H. Umeno | T. Kubo | O. Delferrière | D. Uriot | R. Heidinger | V. Quera | K. Tian | M. Ida | E. Wakai | U. Fischer | M. Mittwollen | D. Rapisarda | Á. Ibarra | F. Mota | F. Orsini | P. Garin | A. García | F. Ogando | M. Weber | J. Mora | R. Gobin | J. Knaster | K. Watanabe | K. Kondo | V. Massaut | F. Arbeiter | M. Porfiri | W. Leysen | M. Sugimoto | J. M. Carmona | C. Oliver | A. Pisent | N. Casal | F. Arranz | T. Pinna | M. Comunian | P. Nghiem | N. Chauvin | M. Pérez | H. Matsumoto | F. Nitti | J. Theile | M. Yamamoto | Aran Sena | P. Gouat | A. Mas | Y. L. Tonquèze | D. Bernardi | M. Frisoni | I. Podadera | G. Pruneri | P. D. Arocas | A. García | T. Kikuchi | R. Román | E. Bargalló | G. Miccichè | J. Abal | J. M. Arroyo | P. Beauvais | A. Delgado | F. Groesche | K. Nishiyama1 | S. Hira | D. Pérez | M. Shingala | M. Soldaini | H. Umeno | T. Yokomine

[1]  G. E. Lucas,et al.  The development of small specimen mechanical test techniques , 1983 .

[2]  Andrei Goussarov,et al.  Conceptual design of the IFMIF Start-Up monitoring module , 2013 .

[3]  M. Mizumoto,et al.  Selective energy neutron source based on the D-Li stripping reaction , 1989 .

[4]  P. A. P. Nghiem,et al.  LIPAc, THE 125mA / 9MeV / CW DEUTERON IFMIF'S PROTOTYPE ACCELERATOR: WHAT LESSONS HAVE WE LEARNT FROM LEDA? , 2014 .

[5]  Joaquin Mollá,et al.  Basic design guideline for the preliminary engineering design of PIE facilities in IFMIF/EVEDA , 2011 .

[6]  Peter Hubberstey,et al.  The interaction of chromium with nitrogen dissolved in liquid lithium , 1983 .

[7]  V. Massaut,et al.  Present status of the Belgian contribution to the validation and design activities for the development of the IFMIF radiation-testing modules , 2011 .

[8]  Steven J. Zinkle,et al.  Users' requirements for IFMIF , 1998 .

[9]  Eiichi Wakai,et al.  Assessment of the beam–target interaction of IFMIF: A state of the art , 2014 .

[10]  P. Plotkin,et al.  Behavior of liquid lithium jet irradiated by 1 MeV electron beams up to 20 kW , 2005 .

[11]  M. Muzzarelli,et al.  Lifus (lithium for fusion) 6 loop design and construction , 2013 .

[12]  Eiichi Wakai,et al.  Design plan and requirement of test module and testing items in IFMIF , 2011 .

[13]  井田 瑞穂 Study on Stability of High-Speed Free-surface Flow of Liquid-metal Target , 2005 .

[14]  S. Dudarev,et al.  An integrated model for materials in a fusion power plant: transmutation, gas production, and helium embrittlement under neutron irradiation , 2012 .

[15]  Masayoshi Sugimoto,et al.  Measurement of Neutron Emission Spectra in Li(d,xn) Reaction with Thick and Thin Targets for 40-MeV Deuterons , 2005 .

[16]  Mario Pérez,et al.  The engineering design evolution of IFMIF: From CDR to EDA phase , 2015 .

[17]  Jie Wei The Very High Intensity Future , 2014 .

[18]  Enric Bargalló,et al.  RAMI strategies in the IFMIF Test Facilities design , 2013 .

[19]  Frank L. Krawczyk,et al.  Basis for low beam loss in the high-current APT linac , 1998 .

[20]  T. Taylor,et al.  Multi-beamlet injection to the RFQ1 accelerator-a comparison of ECR and duoPIGatron proton sources , 1991, Conference Record of the 1991 IEEE Particle Accelerator Conference.

[21]  Omesh K. Chopra,et al.  Influence of temperature and lithium purity on corrosion of ferrous alloys in a flowing lithium environment , 1986 .

[22]  S. Bousson,et al.  SACLAY HIGH INTENSITY LIGHT ION SOURCE STATUS , 2002 .

[23]  D. Stork,et al.  22nd IAEA Fusion Energy Conference: summary of contributions on Fusion Technology and ITER Activities , 2009 .

[24]  E. W. Pottmeyer,et al.  The fusion materials irradiation test facility at Hanford , 1979 .

[25]  Frederik Arbeiter,et al.  Start-up phase of the HELOKA-LP low pressure helium test facility for IFMIF irradiation modules , 2012 .

[26]  Francesco Grespan,et al.  THE IFMIF RFQ REAL-SCALE ALUMINUM MODEL: RF MEASUREMENTS AND TUNING , 2010 .

[27]  C. K. Allen,et al.  Beam-halo measurements in high-current proton beams. , 2002, Physical review letters.

[28]  A. García,et al.  Preliminary definition of the remote handling system for the current IFMIF Test Facilities , 2011 .

[29]  Ahmed Hassanein Deuteron beam interaction with lithium jet in a neutron source test facility , 1996 .

[30]  Akihiro Suzuki,et al.  Engineering Validation and Engineering Design of Lithium Target Facility in IFMIF/EVEDA Project , 2014 .

[31]  Ivan Podadera,et al.  IFMIF-LIPAc DIAGNOSTICS AND ITS CHALLENGES , 2013 .

[32]  Eiichi Wakai,et al.  Workload foreseen for the IFMIF Post Irradiation Examination Facility , 2011 .

[33]  Tobias Heupel,et al.  Overview of results of the first phase of validation activities for the IFMIF High Flux Test Module , 2012 .

[34]  R. G. Perel'man,et al.  High-temperature testing of metals for erosion strength in molten alkali metals , 1980 .

[35]  A. Facco,et al.  Progress in IFMIF Engineering Validation and Engineering Design Activities , 2013 .

[36]  G. A. Esteban,et al.  Hydraulics and heat transfer in the IFMIF liquid lithium target: CFD calculations , 2009 .

[37]  A. Pisent,et al.  RFQ FOR CW APPLICATIONS , 2010 .

[38]  A. Facco,et al.  LOW- AND INTERMEDIATE-BETA, 352 MHZ SUPERCONDUCTING HALF-WAVE RESONATORS FOR HIGH POWER HADRON ACCELERATION , 2006 .

[39]  A. Möslang,et al.  The role of small specimen test technology in fusion materials development , 2007 .

[40]  N. Chauvin,et al.  International Fusion Materials Irradiation Facility injector acceptance tests at CEA/Saclay: 140 mA/100 keV deuteron beam characterization. , 2014, The Review of scientific instruments.

[41]  Masayoshi Sugimoto,et al.  Issues to be verified by IFMIF prototype accelerator for engineering validation , 2002 .

[42]  N. Casal,et al.  Current status of the engineering design of the test modules for the IFMIF , 2013 .

[43]  N. Casal,et al.  Preliminary design of the Neutron Spectral Shifter that is dedicated to the IFMIF Liquid Breeder Validation Module , 2014 .

[44]  J. P. Blewett,et al.  An Intense Li( d,n ) Neutron Radiation Test Facility for Controlled Thermonuclear Reactor Materials Testing , 1976 .

[45]  Martin Reiser,et al.  Free energy and emittance growth in nonstationary charged particle beams , 1991 .

[46]  Eiichi Wakai,et al.  Completion of IFMIF/EVEDA lithium test loop construction , 2012 .

[47]  A. Facco,et al.  TRASCO 100 MEV HIGH INTENSITY PROTON LINAC , 2000 .

[48]  G. P. Lawrence,et al.  Conceptual Design of a High-Performance Deuterium-Lithium Neutron Source for Fusion Materials and Technology Testing , 1990 .

[49]  Jose Manuel Arroyo,et al.  Present status of the Liquid Breeder Validation Module for IFMIF , 2013 .

[50]  A. Möslang,et al.  Nuclear responses in IFMIF creep-fatigue testing machine , 2008 .

[51]  Kuo Tian,et al.  Maintenance inside IFMIF Test Facility—(Technical) logistics , 2013 .

[52]  R. Serber,et al.  The Production of High Energy Neutrons by Stripping , 1947 .

[53]  Kuo Tian,et al.  IFMIF test cell design: Current status and key components , 2013 .

[54]  Javier Abal,et al.  Exploration of reliability databases and comparison of former IFMIF's results , 2011 .

[55]  M. Robinson,et al.  A proposed method of calculating displacement dose rates , 1975 .

[56]  Angel Ibarra,et al.  IFMIF specifications from the users point of view , 2011 .

[57]  Y. Momozaki,et al.  Proton beam-on-liquid lithium stripper film experiment , 2015, Journal of Radioanalytical and Nuclear Chemistry.

[58]  Satoshi Fukada,et al.  Tritium removal by Y hot trap for purification of IFMIF Li target , 2010 .

[59]  Ulrich Fischer,et al.  Evaluation and validation of d-Li cross section data for the IFMIF neutron source term simulation , 2007 .

[60]  B. Brañas,et al.  Application of Galerkin meshfree methods to nonlinear thermo-mechanical simulation of solids under extremely high pulsed loading , 2013 .

[61]  Angel Ibarra,et al.  Overview of the preliminary remote handling handbook for IFMIF , 2009 .

[62]  Akihiro Suzuki,et al.  Nitrogen contamination effect on yttrium gettering of hydrogen in liquid lithium , 2011 .

[63]  A. Ibarra,et al.  IFMIF: overview of the validation activities , 2013 .

[64]  Satoru Tanaka,et al.  Gettering of nitrogen in liquid lithium , 2005 .

[65]  Pierre-Yves Beauvais,et al.  Engineering progress of the linear IFMIF prototype accelerator (LIPAc) , 2013 .

[66]  Ivan Podadera,et al.  High Power Testing of the First Re-buncher Cavity for LIPAC , 2015 .

[67]  Eiichi Wakai,et al.  IFMIF, a fusion relevant neutron source for material irradiation current status , 2014 .

[68]  J. D. Schneider,et al.  High Power Operations of LEDA , 2000 .

[69]  Ivan Podadera,et al.  MAGNETIC DESIGN OF QUADRUPOLES FOR THE MEDIUM AND HIGH ENERGY BEAM TRANSPORT LINE OF THE LIPAC ACCELERATOR , 2011 .

[70]  G. R. Odette,et al.  Modeling of microstructural evolution under irradiation , 1979 .

[71]  A. Schempp,et al.  A Highly Efficient Interdigital-H-Type Resonator for Molecular Ions , 1983, IEEE Transactions on Nuclear Science.

[72]  Ivan Podadera,et al.  THE MEDIUM ENERGY BEAM TRANSPORT LINE (MEBT) OF IFMIF/EVEDA LIPAC ∗ , 2011 .

[73]  Eiichi Wakai,et al.  The design status of the liquid lithium target facility of IFMIF at the end of the engineering design activities , 2015 .

[74]  Hideo Ohno,et al.  Capability of energy selective neutron irradiation test facility (ESNIT) for fusion reactor materials testing and the status of ESNIT program , 1992 .

[75]  Frederik Arbeiter,et al.  Development of the IFMIF Tritium Release Test Module in the EVEDA phase , 2013 .

[76]  Mohamed A. Abdou,et al.  Experimental and analytical investigations of mass transport processes of 12cr-1 movw steel in thermally-convected lithium systems , 1989 .

[77]  E. K. Opperman,et al.  Fusion Materials Irradiation Test Facility a Facility for Fusion Materials Qualification , 1983 .

[78]  Kuo Tian,et al.  Engineering design of the IFMIF EVEDA reference test cell and key components , 2014 .

[79]  R. Duperrier,et al.  Dynamics of the IFMIF very high-intensity beam , 2014 .

[80]  R. Duperrier,et al.  The IFMIF-EVEDA challenges in beam dynamics and their treatment , 2011 .

[81]  Ivan Podadera,et al.  Thermo-mechanical Design of Particle-stopping Devices at the High Energy Beamline Sections of the IFMIF/EVEDA Accelerator , 2011 .

[82]  H. Deitinghoff,et al.  BEAM DYNAMICS LAYOUT OF H-TYPE DRIFT TUBE LINACS FOR INTENSE LIGHT ION BEAMS* , 2002 .

[83]  Eiichi Wakai,et al.  Validation of IFMIF liquid Li target for IFMIF/EVEDA project , 2015 .

[84]  J A Hassberger Preliminary assessment of interactions between the FMIT deuteron beam and liquid-lithium target , 1983 .

[85]  Angel Ibarra,et al.  Overview of the IFMIF test facility design in IFMIF/EVEDA phase , 2015 .

[86]  Jan Egberts,et al.  IFMIF-LIPAc Beam Diagnostics. Profiling and Loss Monitoring Systems , 2012 .

[87]  Didier Uriot,et al.  Core-halo issues for a very high intensity beam , 2014 .

[88]  Takehiko Yokomine Heat transfer between pebbles by taking self-heating of each pebble into consideration , 2013 .

[89]  G. Kreps,et al.  A new tuning method for traveling wave structures , 1995, Proceedings Particle Accelerator Conference.

[90]  Eiichi Wakai,et al.  Measurement of Li target thickness in the EVEDA Li Test Loop , 2015 .