On chaos control and synchronization of the commensurate fractional order Liu system

Abstract In this work, we study chaos control and synchronization of the commensurate fractional order Liu system. Based on the stability theory of fractional order systems, the conditions of local stability of nonlinear three-dimensional commensurate fractional order systems are discussed. The existence and uniqueness of solutions for a class of commensurate fractional order Liu systems are investigated. We also obtain the necessary condition for the existence of chaotic attractors in the commensurate fractional order Liu system. The effect of fractional order on chaos control of this system is revealed by showing that the commensurate fractional order Liu system is controllable just in the fractional order case when using a specific choice of controllers. Moreover, we achieve chaos synchronization between the commensurate fractional order Liu system and its integer order counterpart via function projective synchronization. Numerical simulations are used to verify the analytical results.

[1]  N. Laskin Fractional market dynamics , 2000 .

[2]  Kehui Sun,et al.  Chaos synchronization between two different fractional-order hyperchaotic systems , 2011 .

[3]  Changpin Li,et al.  Chaos in Chen's system with a fractional order , 2004 .

[4]  G. H. Erjaee,et al.  Phase synchronization in fractional differential chaotic systems , 2008 .

[5]  E. Ahmed,et al.  On fractional order differential equations model for nonlocal epidemics , 2007, Physica A: Statistical Mechanics and its Applications.

[6]  刘崇新,et al.  Realization of fractional-order Liu chaotic system by circuit , 2007 .

[7]  Chunguang Li,et al.  Chaos and hyperchaos in the fractional-order Rössler equations , 2004 .

[8]  Juebang Yu,et al.  Synchronization of fractional-order chaotic systems , 2005, Proceedings. 2005 International Conference on Communications, Circuits and Systems, 2005..

[9]  Mingjun Wang,et al.  A chaotic secure communication scheme based on observer , 2009 .

[10]  A. E. M. El Misiery,et al.  On a fractional model for earthquakes , 2006, Appl. Math. Comput..

[11]  Mohammad Saleh Tavazoei,et al.  Robust synchronization of perturbed Chen's fractional-order chaotic systems , 2011 .

[12]  A. E. Matouk,et al.  Dynamical analysis, feedback control and synchronization of Liu dynamical system , 2008 .

[13]  Elena Grigorenko,et al.  Chaotic dynamics of the fractional Lorenz system. , 2003, Physical review letters.

[14]  Baogui Xin,et al.  Projective synchronization of chaotic fractional-order energy resources demand–supply systems via linear control , 2011 .

[15]  M. Caputo Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .

[16]  Wei Zhu,et al.  Function projective synchronization for fractional-order chaotic systems , 2011 .

[17]  Xing-yuan Wang,et al.  Dynamic analysis of the fractional-order Liu system and its synchronization. , 2007, Chaos.

[18]  Reza Ghaderi,et al.  Chaotic fractional-order Coullet system: Synchronization and control approach , 2010 .

[19]  Jianying Yang,et al.  Dynamical models of happiness with fractional order , 2010 .

[20]  M. Haeri,et al.  Synchronization of chaotic fractional-order systems via active sliding mode controller , 2008 .

[21]  Mohammad Saleh Tavazoei,et al.  A necessary condition for double scroll attractor existence in fractional-order systems , 2007 .

[22]  Ahmed Sadek Hegazi,et al.  Dynamical behaviors and synchronization in the fractional order hyperchaotic Chen system , 2011, Appl. Math. Lett..

[23]  N. Ford,et al.  Analysis of Fractional Differential Equations , 2002 .

[24]  A. El-Sayed,et al.  Fractional-order diffusion-wave equation , 1996 .

[25]  Chongxin Liu,et al.  A new chaotic attractor , 2004 .

[26]  L. Chua,et al.  The double scroll family , 1986 .

[27]  Hadi Taghvafard,et al.  Phase and anti-phase synchronization of fractional order chaotic systems via active control , 2011 .

[28]  A. E. Matouk,et al.  Chaos, feedback control and synchronization of a fractional-order modified Autonomous Van der Pol–Duffing circuit , 2011 .

[29]  A. E. Matouk,et al.  Chaos Synchronization between Two Different Fractional Systems of Lorenz Family , 2009 .

[30]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[31]  Ahmad Harb,et al.  On nonlinear control design for autonomous chaotic systems of integer and fractional orders , 2003 .

[32]  S. Bhalekar,et al.  Synchronization of different fractional order chaotic systems using active control , 2010 .

[33]  Nathalie Corson,et al.  Synchronization of Chaotic fractional-Order Systems via Linear Control , 2010, Int. J. Bifurc. Chaos.

[34]  R. Bagley,et al.  Fractional order state equations for the control of viscoelasticallydamped structures , 1991 .

[35]  Reyad El-Khazali,et al.  Fractional-order dynamical models of love , 2007 .

[36]  N. Ford,et al.  A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations , 2013 .

[37]  Ahmed M. A. El-Sayed,et al.  On the fractional-order logistic equation , 2007, Appl. Math. Lett..

[38]  Sachin Bhalekar,et al.  Fractional ordered Liu system with time-delay , 2010 .

[39]  I. Podlubny Fractional differential equations , 1998 .

[40]  C. F. Lorenzo,et al.  Chaos in a fractional order Chua's system , 1995 .

[41]  A. Matouk Stability conditions, hyperchaos and control in a novel fractional order hyperchaotic system , 2009 .

[42]  Elsayed Ahmed,et al.  On some Routh–Hurwitz conditions for fractional order differential equations and their applications in Lorenz, Rössler, Chua and Chen systems , 2006 .

[43]  E. Ahmed,et al.  Equilibrium points, stability and numerical solutions of fractional-order predator–prey and rabies models , 2007 .

[44]  D. Matignon Stability results for fractional differential equations with applications to control processing , 1996 .