Structural Consequences of Chromophore Formation and Exploration of Conserved Lid Residues amongst Naturally Occurring Fluorescent Proteins.

[1]  G. Chang,et al.  An internal-coordinate Monte Carlo method for searching conformational space , 1989 .

[2]  Martin Saunders,et al.  Conformations of cycloheptadecane. A comparison of methods for conformational searching , 1990 .

[3]  G. Chang,et al.  Macromodel—an integrated software system for modeling organic and bioorganic molecules using molecular mechanics , 1990 .

[4]  R Y Tsien,et al.  Wavelength mutations and posttranslational autoxidation of green fluorescent protein. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[5]  W. Stemmer,et al.  Improved Green Fluorescent Protein by Molecular Evolution Using DNA Shuffling , 1996, Nature Biotechnology.

[6]  G. Phillips,et al.  The molecular structure of green fluorescent protein , 1996, Nature Biotechnology.

[7]  J. Onuchic,et al.  Theory of protein folding: the energy landscape perspective. , 1997, Annual review of physical chemistry.

[8]  K. Dill,et al.  From Levinthal to pathways to funnels , 1997, Nature Structural Biology.

[9]  L. Mirny,et al.  Universally conserved positions in protein folds: reading evolutionary signals about stability, folding kinetics and function. , 1999, Journal of molecular biology.

[10]  P. Comba,et al.  Conformational searching of transition metal compounds , 1999, J. Comput. Chem..

[11]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[12]  G. Keserü,et al.  Hessian‐free low‐mode conformational search for large‐scale protein loop optimization: application to c‐jun N‐terminal kinase JNK3 , 2001, J. Comput. Chem..

[13]  M. Zimmer Molecular mechanics, data and conformational analysis of first-row transition metal complexes in the Cambridge Structural Database , 2001 .

[14]  I Kolossváry,et al.  Fully flexible low-mode docking: application to induced fit in HIV integrase. , 2001, Journal of the American Chemical Society.

[15]  Ivet Bahar,et al.  Inhibitor binding alters the directions of domain motions in HIV‐1 reverse transcriptase , 2002, Proteins.

[16]  Dror Tobi,et al.  Allosteric changes in protein structure computed by a simple mechanical model: hemoglobin T<-->R2 transition. , 2003, Journal of molecular biology.

[17]  Mark Prescott,et al.  The 2.0-Å Crystal Structure of eqFP611, a Far Red Fluorescent Protein from the Sea Anemone Entacmaea quadricolor* , 2003, Journal of Biological Chemistry.

[18]  O. Hoegh‐Guldberg,et al.  The 2.2 A crystal structure of a pocilloporin pigment reveals a nonplanar chromophore conformation. , 2003, Structure.

[19]  J. Onuchic,et al.  Theory of Protein Folding This Review Comes from a Themed Issue on Folding and Binding Edited Basic Concepts Perfect Funnel Landscapes and Common Features of Folding Mechanisms , 2022 .

[20]  S. Lukyanov,et al.  GFP-like proteins as ubiquitous metazoan superfamily: evolution of functional features and structural complexity. , 2004, Molecular biology and evolution.

[21]  S. Remington,et al.  Crystal structures and mutational analysis of amFP486, a cyan fluorescent protein from Anemonia majano. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[22]  J. Wiedenmann,et al.  Structural basis for photo-induced protein cleavage and green-to-red conversion of fluorescent protein EosFP. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[23]  J. Tainer,et al.  Crystallographic structures of Discosoma red fluorescent protein with immature and mature chromophores: linking peptide bond trans-cis isomerization and acylimine formation in chromophore maturation. , 2005, Biochemistry.

[24]  Ashley M Buckle,et al.  The 2.1A crystal structure of the far-red fluorescent protein HcRed: inherent conformational flexibility of the chromophore. , 2005, Journal of molecular biology.

[25]  Atsushi Miyawaki,et al.  Semi‐rational engineering of a coral fluorescent protein into an efficient highlighter , 2005, EMBO reports.

[26]  J. Tainer,et al.  Defining the role of arginine 96 in green fluorescent protein fluorophore biosynthesis. , 2005, Biochemistry.

[27]  John A Tainer,et al.  Understanding GFP posttranslational chemistry: structures of designed variants that achieve backbone fragmentation, hydrolysis, and decarboxylation. , 2006, Journal of the American Chemical Society.

[28]  K. Maki,et al.  The equilibrium unfolding intermediate observed at pH 4 and its relationship with the kinetic folding intermediates in green fluorescent protein. , 2006, Journal of molecular biology.

[29]  Ivet Bahar,et al.  Anisotropic network model: systematic evaluation and a new web interface , 2006, Bioinform..

[30]  Exploring chromophore--protein interactions in fluorescent protein cmFP512 from Cerianthus membranaceus: X-ray structure analysis and optical spectroscopy. , 2006, Biochemistry.

[31]  Conrad C. Huang,et al.  Tools for integrated sequence-structure analysis with UCSF Chimera , 2006, BMC Bioinformatics.

[32]  Atsushi Miyawaki,et al.  Structural Characterization of a Blue Chromoprotein and Its Yellow Mutant from the Sea Anemone Cnidopus Japonicus* , 2006, Journal of Biological Chemistry.

[33]  B. Vallone,et al.  Chromophore-protein interactions in the anthozoan green fluorescent protein asFP499. , 2006, Biophysical journal.

[34]  Federico D. Sacerdoti,et al.  Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters , 2006, ACM/IEEE SC 2006 Conference (SC'06).

[35]  J. Rossjohn,et al.  The 1.7 A crystal structure of Dronpa: a photoswitchable green fluorescent protein. , 2006, Journal of molecular biology.

[36]  Atsushi Miyawaki,et al.  Crystallographic evidence for water-assisted photo-induced peptide cleavage in the stony coral fluorescent protein Kaede. , 2007, Journal of molecular biology.

[37]  V. Pletnev,et al.  Three-dimensional structure of yellow fluorescent protein zYFP538 from Zoanthus sp. at the resolution 1.8 Å , 2007, Russian Journal of Bioorganic Chemistry.

[38]  Timothy D. Fenn,et al.  Crystal structures of the luciferase and green fluorescent protein from Renilla reniformis. , 2007, Journal of molecular biology.

[39]  Timothy D. Craggs,et al.  Stable intermediate states and high energy barriers in the unfolding of GFP. , 2007, Journal of molecular biology.

[40]  G. Waldo,et al.  The rough energy landscape of superfolder GFP is linked to the chromophore. , 2007, Journal of molecular biology.

[41]  Jeremy R. Greenwood,et al.  Epik: a software program for pKa prediction and protonation state generation for drug-like molecules , 2007, J. Comput. Aided Mol. Des..

[42]  Changbong Hyeon,et al.  Revealing the bifurcation in the unfolding pathways of GFP by using single-molecule experiments and simulations , 2007, Proceedings of the National Academy of Sciences.

[43]  Refined crystal structures of red and green fluorescent proteins from the button polyp Zoanthus. , 2007, Acta crystallographica. Section D, Biological crystallography.

[44]  David J. Miller,et al.  Diversity and Evolution of Coral Fluorescent Proteins , 2008, PloS one.

[45]  A. Miyawaki,et al.  Light-dependent regulation of structural flexibility in a photochromic fluorescent protein , 2008, Proceedings of the National Academy of Sciences.

[46]  P. Tonge,et al.  Crystal structure and Raman studies of dsFP483, a cyan fluorescent protein from Discosoma striata. , 2008, Journal of molecular biology.

[47]  Ivet Bahar,et al.  Toward a molecular understanding of the anisotropic response of proteins to external forces: insights from elastic network models. , 2008, Biophysical journal.

[48]  Atsushi Miyawaki,et al.  Structural characterization of a thiazoline-containing chromophore in an orange fluorescent protein, monomeric Kusabira Orange. , 2008, Biochemistry.

[49]  Timothy D. Craggs,et al.  Evidence of an intermediate and parallel pathways in protein unfolding from single-molecule fluorescence. , 2008, Journal of the American Chemical Society.

[50]  M. Zimmer,et al.  The Role of the Tight-Turn, Broken Hydrogen Bonding, Glu222 and Arg96 in the Post-translational Green Fluorescent Protein Chromophore Formation. , 2008, Chemical physics.

[51]  M. Zimmer GFP: from jellyfish to the Nobel prize and beyond. , 2009, Chemical Society reviews.

[52]  S. Pletnev,et al.  Rotational order-disorder structure of fluorescent protein FP480. , 2009, Acta crystallographica. Section D, Biological crystallography.

[53]  H. Mizuno,et al.  Structural basis for red‐shifted emission of a GFP‐like protein from the marine copepod Chiridius poppei , 2009, Genes to cells : devoted to molecular & cellular mechanisms.

[54]  Timothy D. Craggs Green fluorescent protein: structure, folding and chromophore maturation. , 2009, Chemical Society reviews.

[55]  B. T. Andrews,et al.  Chromophore packing leads to hysteresis in GFP. , 2009, Journal of molecular biology.

[56]  A. Wlodawer,et al.  Structural Basis for Phototoxicity of the Genetically Encoded Photosensitizer KillerRed* , 2009, The Journal of Biological Chemistry.

[57]  D. Bourgeois,et al.  Reverse pH-dependence of chromophore protonation explains the large Stokes shift of the red fluorescent protein mKeima. , 2009, Journal of the American Chemical Society.

[58]  K. Nagata,et al.  The structure of mAG, a monomeric mutant of the green fluorescent protein Azami-Green, reveals the structural basis of its stable green emission. , 2010, Acta crystallographica. Section F, Structural biology and crystallization communications.

[59]  S. Lukyanov,et al.  Fluorescent proteins and their applications in imaging living cells and tissues. , 2010, Physiological reviews.

[60]  Ivet Bahar,et al.  ProDy: Protein Dynamics Inferred from Theory and Experiments , 2011, Bioinform..

[61]  V. Verkhusha,et al.  Modern fluorescent proteins: from chromophore formation to novel intracellular applications. , 2011, BioTechniques.

[62]  M. Zimmer,et al.  Function and structure of GFP-like proteins in the protein data bank. , 2011, Molecular bioSystems.

[63]  Grace W. Tang,et al.  Remote thioredoxin recognition using evolutionary conservation and structural dynamics. , 2011, Structure.

[64]  I. Bahar,et al.  Sequence Evolution Correlates with Structural Dynamics , 2012, Molecular biology and evolution.

[65]  David C. Cantu,et al.  Acyl carrier protein structural classification and normal mode analysis , 2012, Protein science : a publication of the Protein Society.

[66]  D. Thirumalai,et al.  Denaturant-dependent folding of GFP , 2012, Proceedings of the National Academy of Sciences.

[67]  M. Zimmer,et al.  Water Diffusion In And Out Of The β-Barrel Of GFP and The Fast Maturing Fluorescent Protein, TurboGFP. , 2012, Chemical physics.

[68]  José N Onuchic,et al.  β-Bulge triggers route-switching on the functional landscape of interleukin-1β , 2012, Proceedings of the National Academy of Sciences.

[69]  P. Dedecker,et al.  Fluorescent proteins: shine on, you crazy diamond. , 2013, Journal of the American Chemical Society.

[70]  José N Onuchic,et al.  Hysteresis as a Marker for Complex, Overlapping Landscapes in Proteins. , 2013, The journal of physical chemistry letters.

[71]  Woody Sherman,et al.  Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments , 2013, Journal of Computer-Aided Molecular Design.