Assessment of the Finite VolumE Sea Ice Ocean Model (FESOM2.0), Part I: Description of selected key model elements and comparison to its predecessor version

Abstract. The evaluation and model element description of the second version of the unstructured-mesh Finite-volumE Sea ice–Ocean circulation Model (FESOM2.0) is presented. The model sensitivity to arbitrary Lagrangian Eulerian (ALE) linear and nonlinear free surface formulation, Gent McWilliams eddy parameterisation, isoneutral Redi diffusion and different vertical mixing schemes is documented. The hydrographic biases, large scale circulation, numerical performance and scalability of FESOM2.0 are compared with its predecessor FESOM1.4. FESOM2.0 shows biases with a magnitude comparable to FESOM1.4 and it simulates a more realistic AMOC. Compared to its predecessor FESOM2.0 provides clearly defined fluxes and a three times higher throughput in terms of simulated years per day (SYPD). It is thus the first mature global unstructured-mesh ocean model with computational efficiency comparable to state-of-the-art structured-mesh ocean models. Other key elements of the model and new development will be described in following-up papers.

[1]  Jens Schröter,et al.  Finite-Element Sea Ice Model (FESIM), version 2 , 2015 .

[2]  Alistair Adcroft,et al.  On methods for solving the oceanic equations of motion in generalized vertical coordinates , 2006 .

[3]  W. Large,et al.  Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization , 1994 .

[4]  Peter Korn,et al.  Formulation of an unstructured grid model for global ocean dynamics , 2017, J. Comput. Phys..

[5]  Jens Schröter,et al.  The Finite Element Sea Ice-Ocean Model (FESOM) v.1.4: formulation of an ocean general circulation model , 2014 .

[6]  S. Levitus,et al.  World ocean atlas 2005. Vol. 1, Temperature , 2006 .

[7]  Carl Wunsch,et al.  VERTICAL MIXING, ENERGY, AND THE GENERAL CIRCULATION OF THE OCEANS , 2004 .

[8]  I. N. McCave,et al.  Chapter 4 Circulation and Water Masses of the Southern Ocean: A Review , 2008 .

[9]  Todd D. Ringler,et al.  Evaluation of the arbitrary Lagrangian–Eulerian vertical coordinate method in the MPAS-Ocean model , 2015 .

[10]  V. Legat,et al.  A three-dimensional unstructured mesh finite element shallow-water model, with application to the flows around an island and in a wind-driven, elongated basin , 2008 .

[11]  Francisco J. Doblas-Reyes,et al.  Finding, analysing and solving MPI communication bottlenecks in Earth System models , 2019, J. Comput. Sci..

[12]  A. Huerta,et al.  Finite Element Methods for Flow Problems , 2003 .

[13]  B. Samuels,et al.  North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part II: Inter-annual to decadal variability , 2016 .

[14]  Masha Sosonkina,et al.  pARMS: a parallel version of the algebraic recursive multilevel solver , 2003, Numer. Linear Algebra Appl..

[15]  Patrick Heimbach,et al.  North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part I: Mean states , 2014 .

[16]  Jens Schröter,et al.  A finite-element ocean model: principles and evaluation , 2004 .

[17]  G. Lohmann,et al.  Simulated response of the mid-Holocene Atlantic meridional overturning circulation in ECHAM6-FESOM/MPIOM , 2016 .

[18]  B. Rabe,et al.  Recent Sea Ice Decline Did Not Significantly Increase the Total Liquid Freshwater Content of the Arctic Ocean , 2018, Journal of Climate.

[19]  T. Jung,et al.  Atlantic water in the Nordic Seas: Locally eddy-permitting ocean simulation in a global setup , 2017 .

[20]  Jeffery R. Scott,et al.  The dependence of the ocean’s MOC on mesoscale eddy diffusivities: A model study , 2017 .

[21]  T. Jung,et al.  A 4.5 km resolution Arctic Ocean simulation with the global multi-resolution model FESOM 1.4 , 2017 .

[22]  D. Olbers,et al.  A Closure for Internal Wave–Mean Flow Interaction. Part II: Wave Drag , 2017 .

[23]  J. Schröter,et al.  Towards multi-resolution global climate modeling with ECHAM6–FESOM. Part I: model formulation and mean climate , 2015, Climate Dynamics.

[24]  Patrick Heimbach,et al.  Estimating Eddy Stresses by Fitting Dynamics to Observations Using a Residual-Mean Ocean Circulation Model and Its Adjoint , 2005 .

[25]  Alistair Adcroft,et al.  Rescaled height coordinates for accurate representation of free-surface flows in ocean circulation models , 2004 .

[26]  Robert Hallberg,et al.  Using a resolution function to regulate parameterizations of oceanic mesoscale eddy effects , 2013 .

[27]  Sergey Danilov,et al.  Ocean Modeling on a Mesh With Resolution Following the Local Rossby Radius , 2017 .

[28]  Qiang Wang,et al.  The Finite-volumE Sea ice–Ocean Model (FESOM2) , 2016 .

[29]  Stefan Rahmstorf,et al.  On the driving processes of the Atlantic meridional overturning circulation , 2007 .

[30]  Craig M. Lee,et al.  An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part III: Hydrography and fluxes , 2016 .

[31]  D. Olbers,et al.  A Closure for Internal Wave-Mean Flow Interaction. Part I: Energy Conversion , 2017 .

[32]  Sergey Danilov,et al.  Sea ice leads in the Arctic Ocean: Model assessment, interannual variability and trends , 2016 .

[33]  Jeffery R. Scott,et al.  Southern Ocean warming delayed by circumpolar upwelling and equatorward transport , 2016 .

[34]  Qiang Wang,et al.  Finite element ocean circulation model based on triangular prismatic elements, with application in studying the effect of topography representation , 2008 .

[35]  Bengamin I. Moat,et al.  Observed decline of the Atlantic meridional overturning circulation 2004–2012 , 2013 .

[36]  R. Pacanowski,et al.  Parameterization of Vertical Mixing in Numerical Models of Tropical Oceans , 1981 .

[37]  T. Semmler,et al.  Towards multi-resolution global climate modeling with ECHAM6-FESOM. Part II: climate variability , 2013, Climate Dynamics.

[38]  J. Schröter,et al.  Ocean circulation and sea ice distribution in a finite element global sea ice–ocean model , 2009 .

[39]  Qiang Wang,et al.  Designing variable ocean model resolution based on the observed ocean variability , 2016 .

[40]  P. Gent,et al.  Parameterizing eddy-induced tracer transports in ocean circulation models , 1995 .

[41]  Stephen G. Yeager,et al.  The global climatology of an interannually varying air–sea flux data set , 2009 .

[42]  M. Redi Oceanic Isopycnal Mixing by Coordinate Rotation , 1982 .

[43]  Stephen M. Griffies,et al.  A boundary-value problem for the parameterized mesoscale eddy transport , 2010 .

[44]  Jonathan V. Durgadoo,et al.  Simulating the Agulhas system in global ocean models – nesting vs. multi-resolution unstructured meshes , 2018 .

[45]  E. Volodin,et al.  Influence of a Salt Plume Parameterization in a Coupled Climate Model , 2018, Journal of Advances in Modeling Earth Systems.

[46]  Stephen M. Griffies,et al.  Fundamentals of Ocean Climate Models , 2004 .

[47]  Watson W. Gregg,et al.  Ocean primary production and climate: Global decadal changes , 2003 .

[48]  Philip W. Jones,et al.  A multi-resolution approach to global ocean modeling , 2013 .

[49]  J. Jungclaus,et al.  Earth System Model ( MPI-ESM 1 . 2 ) for High-Resolution Model Intercomparison Project ( HighResMIP ) , 2019 .

[50]  Bengamin I. Moat,et al.  Measuring the Atlantic Meridional Overturning Circulation at 26°N , 2015 .

[51]  B. Samuels,et al.  An assessment of global and regional sea level for years 1993-2007 in a suite of interannual CORE-II simulations , 2014 .

[52]  Sergey Danilov,et al.  Cell-vertex discretization of shallow water equations on mixed unstructured meshes , 2014, Ocean Dynamics.

[53]  Patrick Scholz,et al.  Scalability and some optimization of the Finite-volumE Sea ice–Ocean Model, Version 2.0 (FESOM2) , 2019, Geoscientific Model Development.

[54]  B. Rabe,et al.  Arctic Sea Ice Decline Significantly Contributed to the Unprecedented Liquid Freshwater Accumulation in the Beaufort Gyre of the Arctic Ocean , 2018 .

[55]  Michael Steele,et al.  PHC: A Global Ocean Hydrography with a High-Quality Arctic Ocean , 2001 .

[56]  T. Semmler,et al.  The Relative Influence of Atmospheric and Oceanic Model Resolution on the Circulation of the North Atlantic Ocean in a Coupled Climate Model , 2018, Journal of Advances in Modeling Earth Systems.

[57]  Jeffery R. Scott,et al.  On the Feedback of Ice–Ocean Stress Coupling from Geostrophic Currents in an Anticyclonic Wind Regime over the Beaufort Gyre , 2019, Journal of Physical Oceanography.

[58]  G. Madec,et al.  On the Consumption of Antarctic Bottom Water in the Abyssal Ocean , 2016 .

[59]  Alexander F. Shchepetkin An adaptive, Courant-number-dependent implicit scheme for vertical advection in oceanic modeling , 2015 .

[60]  Jens Schröter,et al.  FESOM under coordinated ocean-ice reference experiment forcing , 2011 .

[61]  M. Rhein,et al.  Evaluation of Labrador Sea Water formation in a global Finite‐Element Sea‐Ice Ocean Model setup, based on a comparison with observational data , 2014 .

[62]  Frank O. Bryan,et al.  Coordinated Ocean-ice Reference Experiments (COREs) , 2009 .

[63]  James C. McWilliams,et al.  Sensitivity to Surface Forcing and Boundary Layer Mixing in a Global Ocean Model: Annual-Mean Climatology , 1997 .

[64]  P. Gent,et al.  Isopycnal mixing in ocean circulation models , 1990 .

[65]  D. Olbers,et al.  Evaluating the Global Internal Wave Model IDEMIX Using Finestructure Methods , 2017 .

[66]  Stephen M. Griffies,et al.  The Gent–McWilliams Skew Flux , 1998 .

[67]  Sergey Danilov,et al.  On computing transports in finite-element models , 2008 .